You can't do that in less the 40 is over 16
You could use perturbation method to calculate this sum. Let's start from:

On the other hand, we have:

So from (1) and (2) we have:

Now, let's try to calculate sum

, but this time we use perturbation method.

but:
![S_{n+1}=\sum\limits_{k=0}^{n+1}k\cdot k!=0\cdot0!+\sum\limits_{k=1}^{n+1}k\cdot k!=0+\sum\limits_{k=0}^{n}(k+1)(k+1)!=\\\\\\= \sum\limits_{k=0}^{n}(k+1)(k+1)k!=\sum\limits_{k=0}^{n}(k^2+2k+1)k!=\\\\\\= \sum\limits_{k=0}^{n}\left[(k^2+1)k!+2k\cdot k!\right]=\sum\limits_{k=0}^{n}(k^2+1)k!+\sum\limits_{k=0}^n2k\cdot k!=\\\\\\=\sum\limits_{k=0}^{n}(k^2+1)k!+2\sum\limits_{k=0}^nk\cdot k!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\ \boxed{S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n}](https://tex.z-dn.net/?f=S_%7Bn%2B1%7D%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%2B1%7Dk%5Ccdot%20k%21%3D0%5Ccdot0%21%2B%5Csum%5Climits_%7Bk%3D1%7D%5E%7Bn%2B1%7Dk%5Ccdot%20k%21%3D0%2B%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%2B1%29%28k%2B1%29%21%3D%5C%5C%5C%5C%5C%5C%3D%0A%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%2B1%29%28k%2B1%29k%21%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B2k%2B1%29k%21%3D%5C%5C%5C%5C%5C%5C%3D%0A%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%5Cleft%5B%28k%5E2%2B1%29k%21%2B2k%5Ccdot%20k%21%5Cright%5D%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B%5Csum%5Climits_%7Bk%3D0%7D%5En2k%5Ccdot%20k%21%3D%5C%5C%5C%5C%5C%5C%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B2%5Csum%5Climits_%7Bk%3D0%7D%5Enk%5Ccdot%20k%21%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B2S_n%5C%5C%5C%5C%5C%5C%0A%5Cboxed%7BS_%7Bn%2B1%7D%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B2S_n%7D)
When we join both equation there will be:
![\begin{cases}S_{n+1}=S_n+(n+1)(n+1)!\\\\S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\end{cases}\\\\\\ S_n+(n+1)(n+1)!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\\\ \sum\limits_{k=0}^{n}(k^2+1)k!=S_n-2S_n+(n+1)(n+1)!=(n+1)(n+1)!-S_n=\\\\\\= (n+1)(n+1)!-\sum\limits_{k=0}^nk\cdot k!\stackrel{(\star)}{=}(n+1)(n+1)!-[(n+1)!-1]=\\\\\\=(n+1)(n+1)!-(n+1)!+1=(n+1)!\cdot[n+1-1]+1=\\\\\\= n(n+1)!+1](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7DS_%7Bn%2B1%7D%3DS_n%2B%28n%2B1%29%28n%2B1%29%21%5C%5C%5C%5CS_%7Bn%2B1%7D%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B2S_n%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5C%0AS_n%2B%28n%2B1%29%28n%2B1%29%21%3D%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%2B2S_n%5C%5C%5C%5C%5C%5C%5C%5C%0A%5Csum%5Climits_%7Bk%3D0%7D%5E%7Bn%7D%28k%5E2%2B1%29k%21%3DS_n-2S_n%2B%28n%2B1%29%28n%2B1%29%21%3D%28n%2B1%29%28n%2B1%29%21-S_n%3D%5C%5C%5C%5C%5C%5C%3D%0A%28n%2B1%29%28n%2B1%29%21-%5Csum%5Climits_%7Bk%3D0%7D%5Enk%5Ccdot%20k%21%5Cstackrel%7B%28%5Cstar%29%7D%7B%3D%7D%28n%2B1%29%28n%2B1%29%21-%5B%28n%2B1%29%21-1%5D%3D%5C%5C%5C%5C%5C%5C%3D%28n%2B1%29%28n%2B1%29%21-%28n%2B1%29%21%2B1%3D%28n%2B1%29%21%5Ccdot%5Bn%2B1-1%5D%2B1%3D%5C%5C%5C%5C%5C%5C%3D%0An%28n%2B1%29%21%2B1)
So the answer is:

Sorry for my bad english, but i hope it won't be a big problem :)
Answer:
Point R
Step-by-step explanation:
Go back 12 points
Step-by-step explanation:
let the no.s of apples in the one box be=x
then no.s of apples in the 2nd box =24-x
according to the question,
24-x+4=20
-x= 20-28
-x=-8
x= 8
no.s of apples in one box= 8
and no.s of apples in another box=24-8= 16
option C
Answer:
This shows us that there are 1400 readers.
Step-by-step explanation:
To work this out you would first need to find how many times 5% goes into 100%, You can do this by dividing 100 by 5, this gives you 20. This is because the whole amount is equivalent to 100%.
To work out the total number of readers you would multiply 70 by 20, this gives you 1400. This is because we know that 70 is equivalent to 5% and that 5% goes into 100% 20. So by multiplying 70 by 20 we are working out the total (100%), and that this shows us there are 1400 readers.
1) Divide 100 by 5.

2) Multiply 70 by 20.
