Answer:
3.84% probability that it has a low birth weight
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

If we randomly select a baby, what is the probability that it has a low birth weight?
This is the pvalue of Z when X = 2500. So



has a pvalue of 0.0384
3.84% probability that it has a low birth weight
we have
----> inequality A
The solution of the inequality A is the interval ------> [-1,∞)
-------> inequality B
The solution of the inequality B is the interval ------> (-∞,7]
The solution of the compound inequality is
[-1,∞) ∩ (-∞,7]=[-1,7]
therefore
the answer in the attached figure
the correct answer to question 1 is 1/8
Step 1. <span>Simplify
33.15
Done! :) Your answer is 33.15</span>
Answer:
i can see the image
Step-by-step explanation:
brainliest me