1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Schach [20]
3 years ago
15

Compute the sum:

Mathematics
1 answer:
Nady [450]3 years ago
8 0
You could use perturbation method to calculate this sum. Let's start from:

S_n=\sum\limits_{k=0}^nk!\\\\\\\(1)\qquad\boxed{S_{n+1}=S_n+(n+1)!}

On the other hand, we have:

S_{n+1}=\sum\limits_{k=0}^{n+1}k!=0!+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=0}^{n}(k+1)!=\\\\\\=1+\sum\limits_{k=0}^{n}k!(k+1)=1+\sum\limits_{k=0}^{n}(k\cdot k!+k!)=1+\sum\limits_{k=0}^{n}k\cdot k!+\sum\limits_{k=0}^{n}k!\\\\\\(2)\qquad \boxed{S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n}

So from (1) and (2) we have:

\begin{cases}S_{n+1}=S_n+(n+1)!\\\\S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\end{cases}\\\\\\
S_n+(n+1)!=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\\\\\\
(\star)\qquad\boxed{\sum\limits_{k=0}^{n}k\cdot k!=(n+1)!-1}

Now, let's try to calculate sum \sum\limits_{k=0}^{n}k\cdot k!, but this time we use perturbation method.

S_n=\sum\limits_{k=0}^nk\cdot k!\\\\\\
\boxed{S_{n+1}=S_n+(n+1)(n+1)!}\\\\\\


but:

S_{n+1}=\sum\limits_{k=0}^{n+1}k\cdot k!=0\cdot0!+\sum\limits_{k=1}^{n+1}k\cdot k!=0+\sum\limits_{k=0}^{n}(k+1)(k+1)!=\\\\\\=
\sum\limits_{k=0}^{n}(k+1)(k+1)k!=\sum\limits_{k=0}^{n}(k^2+2k+1)k!=\\\\\\=
\sum\limits_{k=0}^{n}\left[(k^2+1)k!+2k\cdot k!\right]=\sum\limits_{k=0}^{n}(k^2+1)k!+\sum\limits_{k=0}^n2k\cdot k!=\\\\\\=\sum\limits_{k=0}^{n}(k^2+1)k!+2\sum\limits_{k=0}^nk\cdot k!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\
\boxed{S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n}

When we join both equation there will be:

\begin{cases}S_{n+1}=S_n+(n+1)(n+1)!\\\\S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\end{cases}\\\\\\
S_n+(n+1)(n+1)!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\\\
\sum\limits_{k=0}^{n}(k^2+1)k!=S_n-2S_n+(n+1)(n+1)!=(n+1)(n+1)!-S_n=\\\\\\=
(n+1)(n+1)!-\sum\limits_{k=0}^nk\cdot k!\stackrel{(\star)}{=}(n+1)(n+1)!-[(n+1)!-1]=\\\\\\=(n+1)(n+1)!-(n+1)!+1=(n+1)!\cdot[n+1-1]+1=\\\\\\=
n(n+1)!+1

So the answer is:

\boxed{\sum\limits_{k=0}^{n}(1+k^2)k!=n(n+1)!+1}

Sorry for my bad english, but i hope it won't be a big problem :)
You might be interested in
Which equation models this problem?
OLEGan [10]
A 8p = 48.80
Since Susan paid for 8 dish towels, p. Then the 8 dish towels = $48.80
4 0
2 years ago
Read 2 more answers
5^11 times 5^3 = 5^?
postnew [5]

Answer:

5^{13}

Step-by-step explanation:

5^{11}\times \:5^2

<u>Apply exponent rule : </u>a^b\times \:a^c=a^{b+c}

  • 5^{11}\times \:5^2=5^{11+2}
  • 5^{11+2}

<u>Add 11 +2 = 13</u>

  • <u />=5^{13}

<u>-----------------------</u>

<u>OAmalOHopeO</u>

<u>-----------------------</u>

7 0
2 years ago
2x = 15 + x <br> Solve for X
Ganezh [65]
-x on both sides to get
x=15
3 0
3 years ago
Which could be the name of a line? A.R B. D C. m D. Rs
MrMuchimi
Hi there!

The answer is C. m
The name of a line is always a lower-case letter (e.g. m, k or any other letter from the alphabet).
4 0
3 years ago
Read 2 more answers
A store sells 4 cans of fruit cocktail for $9. How much would it cost you to buy 3 cans of fruit cocktail?
horsena [70]

Answer:

9:4=2.25 3x2.25=6.75 i think lol

6 0
3 years ago
Read 2 more answers
Other questions:
  • Simplify 12x^9 / 2x^3
    13·2 answers
  • Susan enlarged a rectangle with a height of 6 cm and length of 13 cm on her computer. The length of the new rectangle is 19.5 cm
    14·1 answer
  • A cylindrical well is 15 meters deep and has a diameter of 1.6 meters. Approximately how many cubic meters of soil were dug out
    5·1 answer
  • Solve BCD Round the answer to the nearest hundredth
    8·1 answer
  • Find the linear trend forecast for period 8 given the following data:  Period            Sales 1                     19 2       
    11·1 answer
  • If your smart and can do MATH!!!
    8·2 answers
  • Mobymax help 11 points math
    6·2 answers
  • 1 Krista has 10 cups of gelatin. If each bowl holds 3 cup, how many bowls can she fill?​
    14·1 answer
  • Find the perimeter of the rectangle, in feet.
    13·2 answers
  • Im still confused on how to use the distance formula
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!