1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Schach [20]
3 years ago
15

Compute the sum:

Mathematics
1 answer:
Nady [450]3 years ago
8 0
You could use perturbation method to calculate this sum. Let's start from:

S_n=\sum\limits_{k=0}^nk!\\\\\\\(1)\qquad\boxed{S_{n+1}=S_n+(n+1)!}

On the other hand, we have:

S_{n+1}=\sum\limits_{k=0}^{n+1}k!=0!+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=0}^{n}(k+1)!=\\\\\\=1+\sum\limits_{k=0}^{n}k!(k+1)=1+\sum\limits_{k=0}^{n}(k\cdot k!+k!)=1+\sum\limits_{k=0}^{n}k\cdot k!+\sum\limits_{k=0}^{n}k!\\\\\\(2)\qquad \boxed{S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n}

So from (1) and (2) we have:

\begin{cases}S_{n+1}=S_n+(n+1)!\\\\S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\end{cases}\\\\\\
S_n+(n+1)!=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\\\\\\
(\star)\qquad\boxed{\sum\limits_{k=0}^{n}k\cdot k!=(n+1)!-1}

Now, let's try to calculate sum \sum\limits_{k=0}^{n}k\cdot k!, but this time we use perturbation method.

S_n=\sum\limits_{k=0}^nk\cdot k!\\\\\\
\boxed{S_{n+1}=S_n+(n+1)(n+1)!}\\\\\\


but:

S_{n+1}=\sum\limits_{k=0}^{n+1}k\cdot k!=0\cdot0!+\sum\limits_{k=1}^{n+1}k\cdot k!=0+\sum\limits_{k=0}^{n}(k+1)(k+1)!=\\\\\\=
\sum\limits_{k=0}^{n}(k+1)(k+1)k!=\sum\limits_{k=0}^{n}(k^2+2k+1)k!=\\\\\\=
\sum\limits_{k=0}^{n}\left[(k^2+1)k!+2k\cdot k!\right]=\sum\limits_{k=0}^{n}(k^2+1)k!+\sum\limits_{k=0}^n2k\cdot k!=\\\\\\=\sum\limits_{k=0}^{n}(k^2+1)k!+2\sum\limits_{k=0}^nk\cdot k!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\
\boxed{S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n}

When we join both equation there will be:

\begin{cases}S_{n+1}=S_n+(n+1)(n+1)!\\\\S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\end{cases}\\\\\\
S_n+(n+1)(n+1)!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\\\
\sum\limits_{k=0}^{n}(k^2+1)k!=S_n-2S_n+(n+1)(n+1)!=(n+1)(n+1)!-S_n=\\\\\\=
(n+1)(n+1)!-\sum\limits_{k=0}^nk\cdot k!\stackrel{(\star)}{=}(n+1)(n+1)!-[(n+1)!-1]=\\\\\\=(n+1)(n+1)!-(n+1)!+1=(n+1)!\cdot[n+1-1]+1=\\\\\\=
n(n+1)!+1

So the answer is:

\boxed{\sum\limits_{k=0}^{n}(1+k^2)k!=n(n+1)!+1}

Sorry for my bad english, but i hope it won't be a big problem :)
You might be interested in
R = sec(θ) − 2cos(θ), where -π/2 < θ < π/2
Alex

Answer:

  y = (x/(1-x))√(1-x²)

Step-by-step explanation:

The equation can be translated to rectangular coordinates by using the relationships between polar and rectangular coordinates:

  x = r·cos(θ)

  y = r·sin(θ)

  x² +y² = r²

__

  r = sec(θ) -2cos(θ)

  r·cos(θ) = 1 -2cos(θ)² . . . . . . . . multiply by cos(θ)

  r²·r·cos(θ) = r² -2r²·cos(θ)² . . . multiply by r²

  (x² +y²)x = x² +y² -2x² . . . . . . . substitute rectangular relations

  x²(x +1) = y²(1 -x) . . . . . . . . . . . subtract xy²-x², factor

  y² = x²(1 +x)/(1 -x) = x²(1 -x²)/(1 -x)² . . . . multiply by (1-x)/(1-x)

  \boxed{y=\dfrac{x\sqrt{1-x^2}}{1-x}}

__

The attached graph shows the equivalence of the polar and rectangular forms.

4 0
2 years ago
Please help thanks <br> a(n)=−6+3(n−1)
erica [24]

Answer:

a=-1

Step-by-step explanation:

a(n) = -6+3(n-1)

a(n) = -6+3n-3

a(n) -n=-6+3n-n-3

a=-6+3-3

+3 +3

a3=-3

---- ----

3 3

a=-1

5 0
3 years ago
1.) a square has a perimeter of 144 yd. what is the length of each side
Anuta_ua [19.1K]

Answer:

1) 36 yard

2) 2 feet

Step-by-step explanation:

1) Perimeter = 4 * side length

  144 = 4 * s

  s = 36

2) Area = Length * Length

   4 = l * l

   l = 2

8 0
3 years ago
480% as a mixed Number
Drupady [299]
480% = 4.80 =
4 \frac{80} {100} or 4\frac{8}{10}
7 0
3 years ago
Read 2 more answers
What is the area of the gym
Lyrx [107]

Answer:

The way to find the area of a shape is to multiply its hieght by its width.

Step-by-step explanation:

The formula to calculate a circles radius is A = πr^{2}

5 0
2 years ago
Other questions:
  • What is the solution to the following equation? 1/3 (p+9)=3+2(p-6)
    5·1 answer
  • You rent a car for the day and are offered two payment options. With option A you pay $25 flat rate plus $0.15 per mile. With op
    10·1 answer
  • )::)):):):):):):)):):):):):)):):):):):):)):)JUST HELP
    12·1 answer
  • a family of twenty purchased tickets to the country fair.tickets for adult cost $8 and tickets for children cost $4.if the total
    7·1 answer
  • At an auditorium, 3 1/2 sections are filled with people watching a play. Exactly 3/5 of the people watching the play are parents
    7·1 answer
  • Determine the domain on which the following is decreasing
    6·1 answer
  • In a scale drawing of a painting, 1 centimeter represents 7 inches
    14·1 answer
  • PLEASE HELP ME ASAP!!!!!!<br><br><br> ty :)
    7·1 answer
  • You roll a 6-sided die.<br> What is P(even or factor of 45)?<br> Write your answer as a percentage.
    5·2 answers
  • What is the value of x, given that the two prisms are similar?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!