1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Schach [20]
3 years ago
15

Compute the sum:

Mathematics
1 answer:
Nady [450]3 years ago
8 0
You could use perturbation method to calculate this sum. Let's start from:

S_n=\sum\limits_{k=0}^nk!\\\\\\\(1)\qquad\boxed{S_{n+1}=S_n+(n+1)!}

On the other hand, we have:

S_{n+1}=\sum\limits_{k=0}^{n+1}k!=0!+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=0}^{n}(k+1)!=\\\\\\=1+\sum\limits_{k=0}^{n}k!(k+1)=1+\sum\limits_{k=0}^{n}(k\cdot k!+k!)=1+\sum\limits_{k=0}^{n}k\cdot k!+\sum\limits_{k=0}^{n}k!\\\\\\(2)\qquad \boxed{S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n}

So from (1) and (2) we have:

\begin{cases}S_{n+1}=S_n+(n+1)!\\\\S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\end{cases}\\\\\\
S_n+(n+1)!=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\\\\\\
(\star)\qquad\boxed{\sum\limits_{k=0}^{n}k\cdot k!=(n+1)!-1}

Now, let's try to calculate sum \sum\limits_{k=0}^{n}k\cdot k!, but this time we use perturbation method.

S_n=\sum\limits_{k=0}^nk\cdot k!\\\\\\
\boxed{S_{n+1}=S_n+(n+1)(n+1)!}\\\\\\


but:

S_{n+1}=\sum\limits_{k=0}^{n+1}k\cdot k!=0\cdot0!+\sum\limits_{k=1}^{n+1}k\cdot k!=0+\sum\limits_{k=0}^{n}(k+1)(k+1)!=\\\\\\=
\sum\limits_{k=0}^{n}(k+1)(k+1)k!=\sum\limits_{k=0}^{n}(k^2+2k+1)k!=\\\\\\=
\sum\limits_{k=0}^{n}\left[(k^2+1)k!+2k\cdot k!\right]=\sum\limits_{k=0}^{n}(k^2+1)k!+\sum\limits_{k=0}^n2k\cdot k!=\\\\\\=\sum\limits_{k=0}^{n}(k^2+1)k!+2\sum\limits_{k=0}^nk\cdot k!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\
\boxed{S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n}

When we join both equation there will be:

\begin{cases}S_{n+1}=S_n+(n+1)(n+1)!\\\\S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\end{cases}\\\\\\
S_n+(n+1)(n+1)!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\\\
\sum\limits_{k=0}^{n}(k^2+1)k!=S_n-2S_n+(n+1)(n+1)!=(n+1)(n+1)!-S_n=\\\\\\=
(n+1)(n+1)!-\sum\limits_{k=0}^nk\cdot k!\stackrel{(\star)}{=}(n+1)(n+1)!-[(n+1)!-1]=\\\\\\=(n+1)(n+1)!-(n+1)!+1=(n+1)!\cdot[n+1-1]+1=\\\\\\=
n(n+1)!+1

So the answer is:

\boxed{\sum\limits_{k=0}^{n}(1+k^2)k!=n(n+1)!+1}

Sorry for my bad english, but i hope it won't be a big problem :)
You might be interested in
I am bored and want someone to talk to...
jarptica [38.1K]
What’s one plus one equals to waht
5 0
3 years ago
Read 2 more answers
PLEASE HELP GIVING BRAINLIEST ANSWER 88 POINTS
olganol [36]

Answer:  More information

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
F(x) = 741
Marysya12 [62]

I think its option D

3 0
3 years ago
What is the value of 3x^2+4x+12 when x=-2
irina [24]
56 is the answer to the equation
3 0
3 years ago
Read 2 more answers
1 - (9 – 4) : 5 =<br> Please someone help
Norma-Jean [14]

Answer:

-4 = 5

Step-by-step explanation:

9-4=5

1-5=-4

-4:5

3 0
3 years ago
Other questions:
  • Find The sun of 2-3+9/2-27/4+.....-177147/1024
    15·1 answer
  • Alfred is taking a trip. He drove 150 mi and then stopped to refuel. He will drive 60 mph to finish his trip. Let x represent th
    15·1 answer
  • Explain how you can solve the following scenario in two different ways. I owe my friend $16 and my mom owes me $25. how much mon
    7·1 answer
  • The table shows values of a function f(x). What is the average rate of change of f(x) over the interval from x = 5 to x = 9? Sho
    9·1 answer
  • Which numbers belong to the domain of the relation {(–2, 4), (0, –3), (4, 7), (–2, 5)}?
    13·1 answer
  • A reflection over the x-axis and y-axis produces the same result as what other transformation?
    13·1 answer
  • Find an equation for the inverse for each of the following.
    8·1 answer
  • Consider the line y=-3x+1.
    15·1 answer
  • Help! What is the average rate of change of f(x)=x^2+3x+6 over the interval -3 less-than-or-equal-to x less-than-or-equal-to 3?
    15·1 answer
  • Plzz help mehhh plz :( ill mark you
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!