Step-by-step explanation:

According to this trigonometric function, −C gives you the OPPOSITE terms of what they really are, so be EXTREMELY CAREFUL:
![\displaystyle Phase\:[Horisontal]\:Shift → \frac{0}{4} = 0 \\ Period → \frac{2}{4}π = \frac{π}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Phase%5C%3A%5BHorisontal%5D%5C%3AShift%20%E2%86%92%20%5Cfrac%7B0%7D%7B4%7D%20%3D%200%20%5C%5C%20Period%20%E2%86%92%20%5Cfrac%7B2%7D%7B4%7D%CF%80%20%3D%20%5Cfrac%7B%CF%80%7D%7B2%7D)
Therefore we have our answer.
Extended Information on the trigonometric function
![\displaystyle Vertical\:Shift → D \\ Phase\:[Horisontal]\:Shift → \frac{C}{B} \\ Period → \frac{2}{B}π \\ Amplitude → |A|](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Vertical%5C%3AShift%20%E2%86%92%20D%20%5C%5C%20Phase%5C%3A%5BHorisontal%5D%5C%3AShift%20%E2%86%92%20%5Cfrac%7BC%7D%7BB%7D%20%5C%5C%20Period%20%E2%86%92%20%5Cfrac%7B2%7D%7BB%7D%CF%80%20%5C%5C%20Amplitude%20%E2%86%92%20%7CA%7C)
NOTE: Sometimes, your <em>vertical shift</em> might tell you to shift your graph below or above the <em>midline</em> where the amplitude is. Moreover, ALL <em>tangent</em>,<em> </em><em>secant</em>, <em>cosecant</em>, and <em>cotangent</em> functions have NO AMPLITUDE.
I am joyous to assist you anytime.
Answer:
a theory explaining the structure of the earth's crust and many associated phenomena as resulting from the interaction of rigid lithospheric plates which move slowly over the underlying mantle.
Step-by-step explanation:
Answer:
See below ~
Step-by-step explanation:
Sides of a rhombus are equal.
⇒ QT = TS
⇒ x² - 4x - 10 = 6x + 14
⇒ x² - 10x - 24 = 0
⇒ x² + 2x - 12x - 24 = 0
⇒ x (x + 2) - 12 (x + 2) = 0
⇒ (x + 2)(x - 12) = 0
⇒ x = -2 or x = 12
Substitute both values and see which gives a positive value for QT :
<u>When x = -2</u> :
- QT = (-2)² - 4(-2) - 10
- QT = 4 + 8 - 10
- QT = 2
<u>When x = 12</u> :
- QT = (12)² - 4(12) - 10
- QT = 144 - 48 - 10
- QT = 86
The 2 possible answers are :
- x = -2, QT = 2
- x = 12, QT = 86
Answer:
2004
Step-by-step explanation:
hope this is helpful