Check the problem again!Cosecant (csc) is the reciprocal of sine (sin) so they are always either both positive or both negative. Perhaps it should be sine < 0 and cosine > 0? In that case, sine is less than zero in quadrants 3 and 4, and cosine is greater than zero in quadrants 1 and 4, so this angle can only lie in quadrant 4. On the unit circle, remember that cosine is the x-coordinate of the terminal side of the angle and sine is the y-coordinate. Quadrant 1 is that where both sine and cosine are greater than zero. The rest of them are numbered consecutively going counter-clockwise; so quadrant 2 has cos < 0 and sin > 0, quadrant 3 has cos < 0 and sin < 0, and quadrant 4 has cos > 0 and sin < 0
Two equivalent ratios to 11 and 4 would be:
11 to 4, 11:4, and 11/4
Because line QS is outside the circle and only touches it at point S the line is a tangent line