1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lakkis [162]
4 years ago
7

B-2-11. Find the inverse Laplace transform of s + 1/s(s^2 + s +1)

Mathematics
1 answer:
Aleksandr-060686 [28]4 years ago
7 0

Answer:

\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=1-e^{-t/2}cos(\frac{\sqrt{3} }{2}t )+\frac{e^{-t/2}}{\sqrt{3} }sin(\frac{\sqrt{3} }{2}t)

Step-by-step explanation:

let's start by separating the fraction into two new smaller fractions

.

First,<em> s(s^2+s+1)</em> must be factorized the most, and it is already. Every factor will become the denominator of a new fraction.

\frac{s+1}{s(s^{2} + s +1)}=\frac{A}{s}+\frac{Bs+C}{s^{2}+s+1}

Where <em>A</em>, <em>B</em> and <em>C</em> are unknown constants. The numerator of <em>s</em> is a constant <em>A</em>, because <em>s</em> is linear, the numerator of <em>s^2+s+1</em> is a linear expression <em>Bs+C</em> because <em>s^2+s+1</em> is a quadratic expression.

Multiply both sides by the complete denominator:

[{s(s^{2} + s +1)]\frac{s+1}{s(s^{2} + s +1)}=[\frac{A}{s}+\frac{Bs+C}{s^{2}+s+1}][{s(s^{2} + s +1)]

Simplify, reorganize and compare every coefficient both sides:

s+1=A(s^2 + s +1)+(Bs+C)(s)\\\\s+1=As^{2}+As+A+Bs^{2}+Cs\\\\0s^{2}+1s^{1}+1s^{0}=(A+B)s^{2}+(A+C)s^{1}+As^{0}\\\\0=A+B\\1=A+C\\1=A

Solving the system, we find <em>A=1</em>, <em>B=-1</em>, <em>C=0</em>. Now:

\frac{s+1}{s(s^{2} + s +1)}=\frac{1}{s}+\frac{-1s+0}{s^{2}+s+1}=\frac{1}{s}-\frac{s}{s^{2}+s+1}

Then, we can solve the inverse Laplace transform with simplified expressions:

\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=\mathcal{L}^{-1}\{\frac{1}{s}-\frac{s}{s^{2}+s+1}\}=\mathcal{L}^{-1}\{\frac{1}{s}\}-\mathcal{L}^{-1}\{\frac{s}{s^{2}+s+1}\}

The first inverse Laplace transform has the formula:

\mathcal{L}^{-1}\{\frac{A}{s}\}=A\\ \\\mathcal{L}^{-1}\{\frac{1}{s}\}=1\\

For:

\mathcal{L}^{-1}\{-\frac{s}{s^{2}+s+1}\}

We have the formulas:

\mathcal{L}^{-1}\{\frac{s-a}{(s-a)^{2}+b^{2}}\}=e^{at}cos(bt)\\\\\mathcal{L}^{-1}\{\frac{b}{(s-a)^{2}+b^{2}}\}=e^{at}sin(bt)

We have to factorize the denominator:

-\frac{s}{s^{2}+s+1}=-\frac{s+1/2-1/2}{(s+1/2)^{2}+3/4}=-\frac{s+1/2}{(s+1/2)^{2}+3/4}+\frac{1/2}{(s+1/2)^{2}+3/4}

It means that:

\mathcal{L}^{-1}\{-\frac{s}{s^{2}+s+1}\}=\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}+\frac{1/2}{(s+1/2)^{2}+3/4}\}

\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}+\mathcal{L}^{-1}\{\frac{1/2}{(s+1/2)^{2}+3/4}\}\\\\\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}+\frac{1}{2} \mathcal{L}^{-1}\{\frac{1}{(s+1/2)^{2}+3/4}\}

So <em>a=-1/2</em> and <em>b=(√3)/2</em>. Then:

\mathcal{L}^{-1}\{-\frac{s+1/2}{(s+1/2)^{2}+3/4}\}=e^{-\frac{t}{2}}[cos\frac{\sqrt{3}t }{2}]\\\\\\\frac{1}{2}[\frac{2}{\sqrt{3} } ]\mathcal{L}^{-1}\{\frac{\sqrt{3}/2 }{(s+1/2)^{2}+3/4}\}=\frac{1}{\sqrt{3} } e^{-\frac{t}{2}}[sin\frac{\sqrt{3}t }{2}]

Finally:

\mathcal{L}^{-1}\{\frac{s+1}{s(s^{2} + s +1)}\}=1-e^{-t/2}cos(\frac{\sqrt{3} }{2}t )+\frac{e^{-t/2}}{\sqrt{3} }sin(\frac{\sqrt{3} }{2}t)

You might be interested in
Identify the variation as direct, Inverse, Joint or combined.
Y_Kistochka [10]
...snmmsmskNnxnalaowowiuehcbvcxj
4 0
4 years ago
Read 2 more answers
Si nacio el 4 a.C y murio el 45 despues de cristo con cuantos años murió y cuanto hace desde que murio
Natasha2012 [34]

Answer:

????

Step-by-step explanation:

8 0
3 years ago
Find the value of the expression
Cloud [144]
The value of expression is 41
6 0
3 years ago
A line passes through the points (8, –1) and (–4, 2). A coordinate plane. What is the y-intercept of this line?
lora16 [44]

Answer:

y-intercept is 1

Step-by-step explanation:

We need to find the equation of the line first.

<h3>Gradient</h3>

The gradient is found using the formula:

m=\frac{y_{2}-y_{1}  }{x_{2}-x_{1}  }

m=\frac{-1-2}{8--4}

m=-\frac{1}{4}

So the equation is y = -\frac{1}{4}x + c

<h3>Finding c</h3>

To find c we need to substitute the value of x and y into the equation:

-1 = -\frac{8}{4} + c

-1 = -2 + c

1 = c

And c is the y-intercept so it is 1

8 0
3 years ago
Read 2 more answers
Ash is 4 years younger than Gary, and Oak is 5 times Gary's age. The sum of their three ages is 94. Find Gary's age. Show workin
tiny-mole [99]

Answer:

Step-by-step explanation:

If Gary's age is 14 then

Ash is 4 years younger = 14 - 4 = 10

And Oak is 5 times Gary's age = 14 x 5 = 70

So total ages = 70 + 14 + 10 = 94

7 0
3 years ago
Other questions:
  • Can you guys help me please
    12·1 answer
  • I'm paid for her lunch with the $10 bill and received $0.63 in change the lunch special was $7.75 sales tax what is $0.47 what w
    9·1 answer
  • Zero is not an element of the set of natural numbers. True or false
    10·2 answers
  • What is the product in simplest form?
    13·2 answers
  • The central angle of a circle is 48 degrees. The radius is 10cm. What is the area of the sector? Round to the nearest hundredth.
    12·1 answer
  • 2<img src="https://tex.z-dn.net/?f=%20%203%5E%28x%2B7%29%20%3D%20%209%5E%28x-1%29" id="TexFormula1" title=" 3^(x+7) = 9^(x-1)"
    7·1 answer
  • Simplify: -(16 - 5x) 5×-16/ 5× + 16 / -5×-16/ -5 + 16​
    9·1 answer
  • Do any three points always, sometimes, or never determine a plane? Explain.
    5·2 answers
  • ANYONE HELP THIS IS HARD PLS
    11·1 answer
  • Last year, during an investigation of the time spent reading e-mails on a daily basis, researchers found that on Monday the aver
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!