Answer:
hi
Step-by-step explanation:
Answer:
33600 m²
Step-by-step explanation:
The top and bottom horizontal sides are parallel, so this is a trapezoid with bases DC and AB. The height is BC.
area of trapezoid = (a + b)h/2
where a and b are the lengths of the bases, and h is the height.
We need to find the height, BC.
Drop a perpendicular from point A to segment DC. Call the point of intersection E. E is a point on segment DC.
DE + EC = DC
EC = AB = 360 m
DC = 600 m
DE + 360 m = 600 m
DE = 240 m
Use right triangle ADE to find AE. Then BC = AE.
DE² + AE² = AD²
DE² + 240² = 250²
DE² = 62500 - 57600
DE² = 4900
DE = √4900
DE = 70
BC = 70 = h
area = (a + b)h/2
area = (600 m + 360 m)(70 m)/2
area = 33600 m²
Answer:
Cosec <F = 73/55
Step-by-step explanation:
In ΔEFG, the measure of ∠G=90°, GF = 48, EG = 55, and FE = 73. What ratio represents the cosecant of ∠F?
First you must know that;
Cosecant <F = 1/sin<F
Given
∠G=90°, GF = 48, EG = 55, and FE = 73.
ED ,= hyp = 73
EG = opp = 55*side facing <F
Using DOH CAH TOA
Sin theta = opp/hyp
Sin <F= 55/73
Reciprocate both sides
1/sinF = 73/55
Cosec <F = 73/55
Answer: 27.2
Step-by-step explanation:
A squared + B squared = C squared 22 is A squared and 16 is B squared and C squared is the hypotenuse and that is what we are figuring out
22squared= 484 and 16 squared=256 484+256=740 and 27.2 squared is 740 I hope this helps
Answer:
325108
Step-by-step explanation:
it is written as the above