Integers I believe :) hope this helps
3
Step-by-step explanation:
<u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u><u>3</u>
Answer:
hypotenuse leg theorem or OHL
Step-by-step explanation:
Since the congruent angle is a right angle and it is not included, the two congruent sides of the triangles must include their hypotenuses and one of their legs.
The triangles would be congruent by the hypotenuse leg theorem, which states that if the hypotenuse and one leg of a right triangle are congruent to the hypotenuse and a leg of another right triangle, the triangles are congruent.
1. 1/a^8 (Sorry I can't find out what the others are)
Answer
It could be D I’m not sure
Explanation