It depends on the weather but ill go with the second one. U dont have to take my advice tho.
Answer:
There is a 2.17% probability that a randomly selected person aged 40 years or older is male and jogs.
It would be unusual to randomly select a person aged 40 years or older who is male and jogs.
Step-by-step explanation:
We have these following probabilities.
A 13.9% probability that a randomly selected person aged 40 years or older is a jogger, so
.
In addition, there is a 15.6% probability that a randomly selected person aged 40 years or older is male comma given that he or she jogs. I am going to say that P(B) is the probability that is a male.
is the probability that the person is a male, given that he/she jogs. So 
The Bayes theorem states that:

In which
is the probability that the person does both thigs, so, in this problem, the probability that a randomly selected person aged 40 years or older is male and jogs.
So

There is a 2.17% probability that a randomly selected person aged 40 years or older is male and jogs.
A probability is unusual when it is smaller than 5%.
So it would be unusual to randomly select a person aged 40 years or older who is male and jogs.
The survey sample includes residents of the neighboring city whose phone number is listed.
Answer: X+5
Step-by-step explanation:
When you take out the 9 it should be 9(x+5) and when you take out the 9x on the bottom it gives you (x+5)+20 therefore x+5 is your GCF.
I hope this helps :)