Answer:
75 roasted turkeys.
Step-by-step explanation:
Ally's Eats had 75 roasted turkeys.
Bob's Goods had 4/5 as many roasted turkeys as Ally's Eats, hence, the number of roasted turkeys Bob's Goods had is:
4/5 * 75 = 60 roasted turkeys
Ally's Eats had 5/6 as many roasted turkeys as Charlotte's Market. In other words, Charlotte's market had 6/5 as many roasted turkeys as Ally's Eats:
6/5 * 75 = 90 roasted turkeys.
The average is given as the sum of all toasted turkeys in the three shops divided by 3. Hence:
A = (75 + 60 + 90) / 3
A = 225 / 3 = 75 roasted turkeys
The average number of roasted turkeys in the three shops is 75.
Answer:
b 321 and 322
Step-by-step explanation:
because 321.5 is between 321 and 322
Direct variation is y=kx
indirect variation is y=k/x
if we can get it into that form, then it is
5x+6x=1
6y=-5x+1
y=(-5/6)x+1/6
yes
-4x+9y=4
9y=4x+4
y=(4/9)x+4/8
yes
well, first off let's check those two points, we know it's centerd at (-26 , 120) and we also know it passes through (0 , 0), so the distance between those two points is its radius
![~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{0}~,~\stackrel{y_1}{0})\qquad (\stackrel{x_2}{-26}~,~\stackrel{y_2}{120})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{radius}{r}=\sqrt{(~~-26 - 0~~)^2 + (~~120 - 0~~)^2} \implies r=\sqrt{(-26)^2 + (120 )^2} \\\\\\ r=\sqrt{( -26 )^2 + ( 120 )^2} \implies r=\sqrt{ 676 + 14400 } \implies r=\sqrt{ 15076 } \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B0%7D~%2C~%5Cstackrel%7By_1%7D%7B0%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-26%7D~%2C~%5Cstackrel%7By_2%7D%7B120%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bradius%7D%7Br%7D%3D%5Csqrt%7B%28~~-26%20-%200~~%29%5E2%20%2B%20%28~~120%20-%200~~%29%5E2%7D%20%5Cimplies%20r%3D%5Csqrt%7B%28-26%29%5E2%20%2B%20%28120%20%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20r%3D%5Csqrt%7B%28%20-26%20%29%5E2%20%2B%20%28%20120%20%29%5E2%7D%20%5Cimplies%20r%3D%5Csqrt%7B%20676%20%2B%2014400%20%7D%20%5Cimplies%20r%3D%5Csqrt%7B%2015076%20%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \hspace{5em}\stackrel{center}{(\underset{-26}{h}~~,~~\underset{120}{k})}\qquad \stackrel{radius}{\underset{\sqrt{15076}}{r}} \\\\[-0.35em] ~\dotfill\\\\ ( ~~ x - (-26) ~~ )^2 ~~ + ~~ ( ~~ y-120 ~~ )^2~~ = ~~(\sqrt{15076})^2 \\\\[-0.35em] ~\dotfill\\\\ ~\hfill (x+26)^2+(y-120)^2 = 15076~\hfill](https://tex.z-dn.net/?f=%5Ctextit%7Bequation%20of%20a%20circle%7D%5C%5C%5C%5C%20%28x-%20h%29%5E2%2B%28y-%20k%29%5E2%3D%20r%5E2%20%5Chspace%7B5em%7D%5Cstackrel%7Bcenter%7D%7B%28%5Cunderset%7B-26%7D%7Bh%7D~~%2C~~%5Cunderset%7B120%7D%7Bk%7D%29%7D%5Cqquad%20%5Cstackrel%7Bradius%7D%7B%5Cunderset%7B%5Csqrt%7B15076%7D%7D%7Br%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%28%20~~%20x%20-%20%28-26%29%20~~%20%29%5E2%20~~%20%2B%20~~%20%28%20~~%20y-120%20~~%20%29%5E2~~%20%3D%20~~%28%5Csqrt%7B15076%7D%29%5E2%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20~%5Chfill%20%28x%2B26%29%5E2%2B%28y-120%29%5E2%20%3D%2015076~%5Chfill)
The answer would be (-1, -1) on a coordinate grid.
(-6+4)/2=x
(-2)/2=x
-1=x
(5+-7)/2=y
(-2)/2=y
-1=y