Answer:
is outside the circle of radius of
centered at
.
Step-by-step explanation:
Let
and
denote the center and the radius of this circle, respectively. Let
be a point in the plane.
Let
denote the Euclidean distance between point
and point
.
In other words, if
is at
while
is at
, then
.
Point
would be inside this circle if
. (In other words, the distance between
and the center of this circle is smaller than the radius of this circle.)
Point
would be on this circle if
. (In other words, the distance between
and the center of this circle is exactly equal to the radius of this circle.)
Point
would be outside this circle if
. (In other words, the distance between
and the center of this circle exceeds the radius of this circle.)
Calculate the actual distance between
and
:
.
On the other hand, notice that the radius of this circle,
, is smaller than
. Therefore, point
would be outside this circle.
How many do you want ? There are an infinite number of them.
You can find a huge number of them with your calculator
Here are a few (2 for each point I'll earn):
5³ = 125
6³ = 216
7³ = 343
8³ = 512
9³ = 729
10³ = 1,000
11³ = 1,331
12³ = 1,728
13³ = 2,197
14³ = 2,744
.
.
etc.
Answer:
The price of the watch is 280$
Step-by-step explanation:
We know that the original price is 400 dollers, and its on sale for 30%.
So we do 30% of 400 = 120$
finally we do, 400$ - 120$ = 280$
so the final price of the watch is 280$
hope this helps
(2x+1)+89=180. 180 is the angle of a straight line. Set your two known sides equal to 180 and solve for x if needed.