Answer:
Fatima should shade 3 groups of 8 small squares or 24 small squares.
Step-by-step explanation:
Consider the provided information.
Fatima is shading this model to show 0.08 × 3. Shade the correct amount of boxes that will show the product.
Here 3 represents the number of groups and 8 represents the small square.
Multiplication is repeated addition.
We can rewrite the above multiplication as: 0.08 + 0.08 + 0.08
Therefore 0.08 × 3 = 0.24
Here 0.24 represents 24 small squares.
The required model is shown below:
Hence, Fatima should shade 3 groups of 8 small squares or 24 small squares.
It’s only a vertical angle
Answer:
8
Step-by-step explanation:
8^3 = 8*8*8 = 512
la base = base = 8
Answer:
P(A∣D) = 0.667
Step-by-step explanation:
We are given;
P(A) = 3P(B)
P(D|A) = 0.03
P(D|B) = 0.045
Now, we want to find P(A∣D) which is the posterior probability that a computer comes from factory A when given that it is defective.
Using Bayes' Rule and Law of Total Probability, we will get;
P(A∣D) = [P(A) * P(D|A)]/[(P(A) * P(D|A)) + (P(B) * P(D|B))]
Plugging in the relevant values, we have;
P(A∣D) = [3P(B) * 0.03]/[(3P(B) * 0.03) + (P(B) * 0.045)]
P(A∣D) = [P(B)/P(B)] [0.09]/[0.09 + 0.045]
P(B) will cancel out to give;
P(A∣D) = 0.09/0.135
P(A∣D) = 0.667