Factorise 4b² + 16b ⇒ 4b(b+4)
expand (a-1)(a-2) ⇒ a(a-2) - 1(a-2) ⇒ a² - 2a - 1a + 2 ⇒a² - 3a + 2
factorise x² + 8x + 7 ⇒(x + 1) (x + 7)
evaluate y⁶ / y² ⇒ y * y * y * y * y * y / y * y = y⁴
if x = -1 and y = 5, find z when z = x² + 2y² ;
z = -1² + 2(5²) ⇒ 1 + 2(25) ⇒1 + 50 = 51
Make x the subject: y = 4x - 3
y = 4x - 3
<u>+3 +3</u>
3 + y = 4x
<u>÷4 ÷4 </u>
(3+y)/4 = x
You have to use the keywords that register to the problem
Answer: Effect of outliers on mean median and mode
Outlier An extreme value in a set of data which is much higher or lower than the other numbers. Outliers affect the mean value of the data but have little effect on the median or mode of a given set of data.
Step-by-step explanation:
7/2 is the reciprocal of 2/7
Answer:
![\sqrt[3]{a^{2}+b^{2}}=(a^{2}+b^{2})^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Ba%5E%7B2%7D%2Bb%5E%7B2%7D%7D%3D%28a%5E%7B2%7D%2Bb%5E%7B2%7D%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
Step-by-step explanation:
∵∛x = (x)^1/3
∴ ![\sqrt[3]{a^{2}+b^{2}}=(a^{2}+b^{2})^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Ba%5E%7B2%7D%2Bb%5E%7B2%7D%7D%3D%28a%5E%7B2%7D%2Bb%5E%7B2%7D%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
So you can replace the radicals by fractional exponents