We can let
a = 1/(x-1)
b = 1/(y+2)
and rewrite the equations as
2a - b = 10
a + 3b = -9
Using the first to write an expression for b, we get
b = 2a - 10
Substituting this into the second equation gives
a + 3(2a -10) = -9
7a -30 = -9 . . . . . . . . simplify
7a = 21 . . . . . . . . . . .add 30
a = 3
b = 2·3 - 10 = -4
Now, we can find x and y.
3 = 1/(x -1)
x - 1 = 1/3
x = 1 1/3 = 4/3
-4 = 1/(y +2)
y +2 = -1/4
y = -2 1/4 = -9/4
Then the desired sum is
x + y = 4/3 -9/4 = (16 -27)/12
x + y = -11/12
The appropriate choice is ..
c. -11/12
If you can you should go to a friends house for a while until you feel like it’s safe to go back
The absolute value inequality can be decomposed into two simpler ones.
x < 0
x > -8
<h3>
</h3><h3>
Which two inequalities can be used?</h3>
Here we start with the inequality:
3|x + 4| - 5 < 7
First we need to isolate the absolute value part:
3|x + 4| < 7 + 5
|x + 4| < (7 + 5)/3
|x + 4| < 12/3
|x + 4| < 4
The absolute value inequality can now be decomposed into two simpler ones:
x + 4 < 4
x + 4 > - 4
Solving both of these we get:
x < 4 - 4
x > -4 - 4
x < 0
x > -8
These are the two inequalities.
Learn more about inequalities:
brainly.com/question/24372553
#SPJ1
I'll write in the format (x;y) where x is the salad dressings amount, and y is the amount of servings.
We can see the line goes through the points (1;2) , (2;4) , (3;6) ...
So, the amount of servings are doubled the amount of salad dressings she need to use. (1 cup every 2 servings, 2 cups every 4 servings, etc.)
-> Leslle used half a cup of salad dressing for every serving of salad (B)