1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frosja888 [35]
3 years ago
5

Fine Out the answer to this equation -6/2=

Mathematics
2 answers:
xz_007 [3.2K]3 years ago
8 0

Answer:

The answer would be -3 because a negative number multiplied by a positive number would make it a negative number for the answer.

Step2247 [10]3 years ago
3 0

Answer:

-3

Step-by-step explanation:

I reduced it

You might be interested in
Question Progress
vlada-n [284]

Answer:

A) 32.

B)16n+1

Step-by-step explanation:

A) 32.

B)16n+1

7 0
2 years ago
Determine the t critical value(s) that will capture the desired t-curve area in each of the following cases: a. Central area 5 .
Flauer [41]

Answer:

a) "=T.INV(0.025,10)" and "=T.INV(1-0.025,10)"

And we got t_{\alpha/2}=-2.228 , t_{1-\alpha/2}=2.228

b)  "=T.INV(0.025,20)" and "=T.INV(1-0.025,20)"

And we got t_{\alpha/2}=-2.086 , t_{1-\alpha/2}=2.086

c) "=T.INV(0.005,20)" and "=T.INV(1-0.005,20)"

And we got t_{\alpha/2}=-2.845 , t_{1-\alpha/2}=2.845

d) "=T.INV(0.005,50)" and "=T.INV(1-0.005,50)"

And we got t_{\alpha/2}=-2.678 , t_{1-\alpha/2}=2.678

e) "=T.INV(1-0.01,25)"

And we got t_{\alpha}= 2.485

f) "=T.INV(0.025,5)"

And we got t_{\alpha}= -2.571

Step-by-step explanation:

Previous concepts

The t distribution (Student’s t-distribution) is a "probability distribution that is used to estimate population parameters when the sample size is small (n<30) or when the population variance is unknown".

The shape of the t distribution is determined by its degrees of freedom and when the degrees of freedom increase the t distirbution becomes a normal distribution approximately.  

The degrees of freedom represent "the number of independent observations in a set of data. For example if we estimate a mean score from a single sample, the number of independent observations would be equal to the sample size minus one."

Solution to the problem

We will use excel in order to find the critical values for this case

Determine the t critical value(s) that will capture the desired t-curve area in each of the following cases:

a. Central area =.95, df = 10

For this case we want 0.95 of the are in the middle so then we have 1-0.95 = 0.05 of the area on the tails. And on each tail we will have \alpha/2=0.025.

We can use the following excel codes:

"=T.INV(0.025,10)" and "=T.INV(1-0.025,10)"

And we got t_{\alpha/2}=-2.228 , t_{1-\alpha/2}=2.228

b. Central area =.95, df = 20

For this case we want 0.95 of the are in the middle so then we have 1-0.95 = 0.05 of the area on the tails. And on each tail we will have \alpha/2=0.025.

We can use the following excel codes:

"=T.INV(0.025,20)" and "=T.INV(1-0.025,20)"

And we got t_{\alpha/2}=-2.086 , t_{1-\alpha/2}=2.086

c. Central area =.99, df = 20

 For this case we want 0.99 of the are in the middle so then we have 1-0.99 = 0.01 of the area on the tails. And on each tail we will have \alpha/2=0.005.

We can use the following excel codes:

"=T.INV(0.005,20)" and "=T.INV(1-0.005,20)"

And we got t_{\alpha/2}=-2.845 , t_{1-\alpha/2}=2.845

d. Central area =.99, df = 50

  For this case we want 0.99 of the are in the middle so then we have 1-0.99 = 0.01 of the area on the tails. And on each tail we will have \alpha/2=0.005.

We can use the following excel codes:

"=T.INV(0.005,50)" and "=T.INV(1-0.005,50)"

And we got t_{\alpha/2}=-2.678 , t_{1-\alpha/2}=2.678

e. Upper-tail area =.01, df = 25

For this case we need on the right tail 0.01 of the area and on the left tail we will have 1-0.01 = 0.99 , that means \alpha =0.01

We can use the following excel code:

"=T.INV(1-0.01,25)"

And we got t_{\alpha}= 2.485

f. Lower-tail area =.025, df = 5

For this case we need on the left tail 0.025 of the area and on the right tail we will have 1-0.025 = 0.975 , that means \alpha =0.025

We can use the following excel code:

"=T.INV(0.025,5)"

And we got t_{\alpha}= -2.571

8 0
3 years ago
Find the area of the regular hexagon PQRSTU of sides 8 cm as shown in the figure
Lemur [1.5K]

Answer:

Area = 245m^2

Step-by-step explanation:

We can split this figure into 2 parts, a rectangle and a trapezoid.

Rectangle Sides = 10m and 20m

Area = 10m x 20m = 200m

Trapezoid formula = a+b/2(h)

a and b are the 2 bases and h is the height

Using a little deductive reasoning we get the following, 5+10/2(6)

This simplifies to 15/2(6) -->

7.5(6) = 45

Thus, our area is 200 + 45, or 245m^2

6 0
2 years ago
The sales tax on clothing in Nebraska is 5.5%. Calculate how much tax you need to pay on a shirt if it costs $36.60 before tax.
EleoNora [17]

Answer:

$2.01.

Step-by-step explanation:

Tax paid = 5.5% * 36.60

= 0.055 * 36.60

= 2.013

7 0
3 years ago
Read 2 more answers
Trials in an experiment with a polygraph include 98 results that include 24 cases of wrong results and 74 cases of correct resul
madreJ [45]

Answer:

z=\frac{0.755 -0.8}{\sqrt{\frac{0.8(1-0.8)}{98}}}=-1.114  

p_v =P(z  

So the p value obtained was a very high value and using the significance level given \alpha=0.05 we have p_v>\alpha so we can conclude that we have enough evidence to  FAIL to reject the null hypothesis, and we can said that at 5% of significance the proportion of successes is not significantly less than 0.8 or 80%

Step-by-step explanation:

Data given and notation

n=98 represent the random sample taken

X=74 represent the number of cases correct

\hat p=\frac{74}{98}=0.755 estimated proportion of successes

p_o=0.8 is the value that we want to test

\alpha=0.05 represent the significance level

Confidence=95% or 0.95

z would represent the statistic (variable of interest)

p_v represent the p value (variable of interest)  

Concepts and formulas to use  

We need to conduct a hypothesis in order to test the claim that the true proportion of successes is less than 0.8.:  

Null hypothesis:p\geq 0.8  

Alternative hypothesis:p < 0.8  

When we conduct a proportion test we need to use the z statisitc, and the is given by:  

z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}} (1)  

The One-Sample Proportion Test is used to assess whether a population proportion \hat p is significantly different from a hypothesized value p_o.

Calculate the statistic  

Since we have all the info requires we can replace in formula (1) like this:  

z=\frac{0.755 -0.8}{\sqrt{\frac{0.8(1-0.8)}{98}}}=-1.114  

Statistical decision  

It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.

The significance level provided \alpha=0.05. The next step would be calculate the p value for this test.  

Since is a left tailed test the p value would be:  

p_v =P(z  

So the p value obtained was a very high value and using the significance level given \alpha=0.05 we have p_v>\alpha so we can conclude that we have enough evidence to  FAIL to reject the null hypothesis, and we can said that at 5% of significance the proportion of successes is not significantly less than 0.8 or 80%

5 0
3 years ago
Other questions:
  • Lucas is offered either 15% or 21$ off his total shopping bill. How much would have to be spent to make 15% option the best one?
    10·1 answer
  • A positive integer is 1010 more than 2727 times another. their product is 1211712117. find the two integers.
    8·1 answer
  • Which of the following is the correct representation of the polynomial
    8·1 answer
  • How much lower is -31 than 2,868?
    8·2 answers
  • A magician performing at children's birthday parties charges $120.00
    15·1 answer
  • What is the IQR (Interquartile Range) for the following data? 20, 27, 28, 29,
    12·1 answer
  • Please help quickly !!!
    9·1 answer
  • What are the solutions to the equation?
    6·1 answer
  • What is an equation for the line that passes through the points (-2,3), and (2,1)
    15·1 answer
  • What is the value of the expression (9 1/3)^3?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!