Answer:
Domain stays the same while the range changes
Step-by-step explanation:
While reflecting cross x-axis, the x coordinates remains the same while the y-coordinate changes to its opposite.
=> x- coordinate = Domain
=> y-coordinate = Range
Answer:
a) x₁ = 14
x₂ = - 6
b) x = 4
c) P(max ) = 4000000 $
Step-by-step explanation:
To find the axis of symmetry we solve the equation
a) -4x² + 32x + 336 = 0
4x² - 32x - 336 = 0 or x² - 8x - 84 = 0
x₁,₂ = [ -b ± √b² -4ac ]/2a
x₁,₂ = [ 8 ±√(64) + 336 ]/2
x₁,₂ = [ 8 ± √400 ]/2
x₁,₂ =( 8 ± 20 )/2
x₁ = 14
x₂ = -6
a) Axis of symmetry must go through the middle point between the roots
x = 4 is the axis of symmetry
c) P = -4x² + 32x + 336
Taking derivatives on both sides of the equation we get
P´(x) = - 8x + 32 ⇒ P´(x) = 0 - 8x + 32
x = 32/8
x = 4 Company has to sell 4 ( 4000 snowboard)
to get a profit :
P = - 4*(4)² + 32*(4) + 336
P(max) = -64 + 128 + 336
P(max) = 400 or 400* 10000 = 4000000
Answer:
(1, 3)
Step-by-step explanation:
2x + 3y = 11 ------------(i)
-4x + 2y = 2 ------------(ii)
Multiply equation (i) by 2.
(i)*2 4x + 6y = 22
(ii) <u>-4x + 2y = 2</u> {Now add and x will be eliminated}
8y = 24
y= 24/8
y = 3
Plugin the value of y in equation (i)
2x + 3*3 = 11
2x + 9 = 11
2x = 11-9
2x = 2
x = 2/2
x = 1