1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flauer [41]
3 years ago
12

Let f(x) = (3x4 - 12)3 and h(x) = x3. Given that f(x) = (hºg)(x), find g(x).

Mathematics
1 answer:
blagie [28]3 years ago
6 0

Answer:

Step-by-step explanation:

f(x) = (3x4 - 12)3 and h(x) = x3.

g(x) = 3x4 - 12

since  f(x) = (hºg)(x) = h(g(x))

You might be interested in
SLOVE THIS QUESTION
eduard
The answer is 1561 yuans and 27 jiao.
6 0
3 years ago
This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive an
maxonik [38]

Answer:

5.0 ft-lbf

Step-by-step explanation:

The force is

F = \dfrac{9}{6^x}

This force is not a constant force. For a non-constant force, the work done, <em>W</em>, is

W = \int\limits^{x_2}_{x_1} {F(x)} \, dx

with x_1 and x_2 the initial and final displacements respectively.

From the question, x_1  =0 and x_2 = 12.

Then

W = \int\limits^{12}_0 {\dfrac{9}{6^x}} \, dx

Evaluating the indefinite integral,

\int\limits \dfrac{9}{6^x} \, dx  =9 \int\limits\!\left(\frac{1}{6}\right)^x \, dx

From the rules of integration,

\int\limits a^x\, dx = \dfrac{a^x}{\ln a}

9 \int\limits \left(\frac{1}{6}\right)^x \, dx = 9\times\dfrac{(1/6)^x}{\ln(1/6)} = -5.0229\left(\dfrac{1}{6}\right)^x

Returning the limits,

\left.-5.0229\left(\dfrac{1}{6}\right)^x\right|^{12}_0 = -5.0229(0.1667^{12} - 0.1667^0) = 5.0229 \approx 5.0 \text{ ft-lbf}

4 0
3 years ago
Which are correct statements regarding proofs? Select three options.
kompoz [17]

Answer:

In a paragraph proof, statements and their justifications are written in sentences in a logical order.

A two-column proof consists of a list statements and the reasons the statements are true.

A paragraph proof is a two-column proof in sentence form.

Step-by-step explanation:

  • In a paragraph proof, statements and their justifications are written in sentences in a logical order.
  • A two-column proof consists of a list statements and the reasons the statements are true.
  • A paragraph proof is a two-column proof in sentence form.

A paragraph proof is only a two-column proof written in sentences. However, since it is easier to leave steps out when writing a paragraph proof.

A two-column geometric proof consists of a list of statements, and the reasons that we know those statements are true. The statements are listed in a column on the left, and the reasons for which the statements can be made are listed in the right column

8 0
3 years ago
Help please . What does ad equal
tangare [24]

Answer:

AD also equal 14

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Pls help i will mark brainliest!:) thank you!;D
pashok25 [27]
<h2><em><u>A</u></em><em><u>N</u></em><em><u>S</u></em><em><u>W</u></em><em><u>E</u></em><em><u>R</u></em></h2>

<em><u>H</u></em><em><u>e</u></em><em><u>r</u></em><em><u>e</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>t</u></em><em><u>w</u></em><em><u>o</u></em><em><u> </u></em><em><u>p</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u>s</u></em><em><u> </u></em><em><u>g</u></em><em><u>i</u></em><em><u>v</u></em><em><u>e</u></em><em><u>n</u></em><em><u> </u></em><em><u>o</u></em><em><u>n</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>g</u></em><em><u>r</u></em><em><u>a</u></em><em><u>p</u></em><em><u>h</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>a</u></em><em><u>n</u></em><em><u>d</u></em><em><u> </u></em><em><u>B</u></em>

<em><u>T</u></em><em><u>o</u></em><em><u> </u></em><em><u>f</u></em><em><u>i</u></em><em><u>n</u></em><em><u>d</u></em><em><u> </u></em><em><u>:</u></em><em><u> </u></em><em><u> </u></em><em><u>T</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>d</u></em><em><u>i</u></em><em><u>s</u></em><em><u>t</u></em><em><u>a</u></em><em><u>n</u></em><em><u>c</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>b</u></em><em><u>e</u></em><em><u>t</u></em><em><u>w</u></em><em><u>e</u></em><em><u>e</u></em><em><u>n</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>t</u></em><em><u>w</u></em><em><u>o</u></em><em><u> </u></em><em><u>p</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u>s</u></em><em><u> </u></em><em><u>w</u></em><em><u>e</u></em><em><u> </u></em><em><u>k</u></em><em><u>n</u></em><em><u>o</u></em><em><u>w</u></em><em><u> </u></em><em><u>d</u></em><em><u>i</u></em><em><u>s</u></em><em><u>t</u></em><em><u>a</u></em><em><u>n</u></em><em><u>c</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>b</u></em><em><u>e</u></em><em><u>t</u></em><em><u>w</u></em><em><u>e</u></em><em><u>e</u></em><em><u>n</u></em><em><u> </u></em><em><u>t</u></em><em><u>w</u></em><em><u>o</u></em><em><u> </u></em><em><u>p</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u> </u></em><em><u>o</u></em><em><u>n</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>g</u></em><em><u>r</u></em><em><u>a</u></em><em><u>p</u></em><em><u>h</u></em><em><u> </u></em>

<em><u>=</u></em><em><u> </u></em>

<em><u>\sqrt{ {(x2 - x1)}^{2} }  +  \sqrt{ {(y2 - y1)}^{2} }</u></em>

<em><u>T</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>P</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>(</u></em><em><u>0</u></em><em><u>,</u></em><em><u>0</u></em><em><u>)</u></em>

<em><u>T</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>p</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u> </u></em><em><u>B</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>(</u></em><em><u>3</u></em><em><u>,</u></em><em><u>6</u></em><em><u>)</u></em>

<em><u>s</u></em><em><u>o</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>d</u></em><em><u>i</u></em><em><u>s</u></em><em><u>t</u></em><em><u>a</u></em><em><u>n</u></em><em><u>c</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>b</u></em><em><u>e</u></em><em><u>t</u></em><em><u>w</u></em><em><u>e</u></em><em><u>e</u></em><em><u>n</u></em><em><u> </u></em><em><u>p</u></em><em><u>o</u></em><em><u>i</u></em><em><u>n</u></em><em><u>t</u></em><em><u>s</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>a</u></em><em><u>n</u></em><em><u>d</u></em><em><u> </u></em><em><u>B</u></em><em><u> </u></em>

<em><u>\sqrt{ {(0 - 0)}^{2} }  +  \sqrt{ {(6 - 3)}^{2} }</u></em>

<em><u>\sqrt{ {3}^{2} }</u></em>

<em><u>3</u></em>

So 3.0 is the distance

Hope it helps

7 0
3 years ago
Other questions:
  • Rhett is solving the quadratic equation 0= x2 – 2x – 3 using the quadratic formula. Which shows the correct substitution of the
    7·1 answer
  • Two lines pass through the origin. The lines have slopes that are opposite. Compare and contrast the lines. What is the slope of
    13·1 answer
  • (n-7) x 3 = 24 please help!!
    9·2 answers
  • Solve the equation |6c-1|=0
    15·1 answer
  • A textile manufacturer has historically found an average of 0.1 flaws per square meter of cloth. Let X be the number of flaws in
    8·1 answer
  • Angles of a triangle are in the ratio 2 : 4 : 3. Find the smallest angle of the triangle
    7·2 answers
  • The nut shack sells cashews for $6.00 per pound and Brazil nuts for $5.00 per pound. How much of each type should be used to mak
    11·1 answer
  • Simplify: 3(4x-5) - (3x+2)
    11·1 answer
  • What’s the correct answer for this?
    14·1 answer
  • 5. Find the value(s) of x so that the line containing the points (2x + 3, x + 2) and (0, 2) is
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!