Answer:
Eukaryotes have solved the end-replication problem by locating highly repeated DNA sequence at the end, or telomeres, of each linear chromosome.
Explanation:
Telomeres are stretches of DNA at the ends of the chromosome, They protect the genetic data and make it possible for cells to divide.
0.1 M solution of a disaccharide solution will contain 2000 monosaccharide molecules.
<h3>What are monosaccharides?</h3>
Monosaccharides, also known as simple sugars are the simplest monomers of carbohydrates which may either be 3 carbon, 4 carbon, 5 carbon, 6 carbon or 7 carbo compounds.
There are two types of monosaccharides;
- aldoses sugars, e.g. glucose, and
- ketose sugars e.g. fructose.
When two monosaccharides are linked together by glycosidic bonds to form a single compound, the compound formed is called a disaccharide.
Considering the give question:
Suppose a 0.1M solution of a monosaccharide contains 1000 monosaccharide molecules. How many monosaccharide molecules would be in a 0.1 M solution of a disaccharide.
The number of monosaccharides molecules present in the 0.1 M solution of a disaccharide is determined as follows:
1 disaccharide molecule contains 2 monosaccharide molecules
0.1M solution of a monosaccharide contains 1000 monosaccharide molecules.
0.1 M solution of a disaccharide will contain 2 * 1000 monosaccharide molecules
0.1 M solution of a disaccharide will contain = 2000 monosaccharide molecules.
Learn more about monosaccharides and disaccharides at: brainly.com/question/731310
#SPJ1
Insulin and glucagon are the hormones that cause blood glucose (blood sugar) preserved in a narrow range. The pancreas serves as the central part of this process. Secreted by the pancreas are both insulin and glucagon. Determined by the production of insulin and glucagon, people can find out whether someone may have diabetes, <span> hypoglycemia, low blood pressure, etc. Insulin or glucose can be prescribed to victims of those listed issues, it is mostly used to balance out the level of glucagon and insulin to try to stop the problem.</span>
Alleles in the F1 must be Tt to have height variety in the F2.
It is supported by evidence from a wide variety of scientific disciplines, including genetics, which shows that different species have similarities in their DNA. There is also evidence supporting the Theory of Evolution in paleontology and geology.