Tan x /(1 +sec x) + (1+sec x) /tan x
Tan x=sin x / cos x
1+ sec x=1 +1/cos x=(cos x+1)/cos x
Therefore:
tan x /(1 +sec x) =(sin x/cos x)/(cos x+1)/cos x=
=(sin x * cos x) / [cos x* (cos x+1)]=sin x /(Cos x+1)
(1+sec x) /tan x=[(cos x+1)/cos x] / (sin x/cos x)=
=[cos x(cos x+1)]/(sin x *cos x)=(cos x+1)/sin x
tan x /(1 +sec x) + (1+sec x) /tan x=
=sin x /(Cos x+1) + (cos x+1)/sin x=
=(sin²x+cos²x+2 cos x+1) / [sin x(cos x+1)]=
Remember: sin²x+cos²x=1⇒ sin²x=1-cos²x
=(1-cos²x+cos²x+2 cos x+1) / [sin x(cos x+1)]=
=2 cos x+2 / [sin x(cos x+1)]=
=2(cos x+1) / [sin x(cos x+1)]=
=2 /sin x
Answer : tan x /(1 +sec x) + (1+sec x) /tan x= 2/sin x
70(0.21) + 99(0.23) + 91(0.23) + 90(0.33)
= 14.7 + 22.77 + 20.93 + 29.7
= 88.1%
the answer would be 50.27m3
Answer:Triangle Inequality Theorem. The sum of the lengths of any two sides of a triangle is greater than the length of the third side
Step-by-step explanation:
Answer:
6y = 12x + 36 is x=
1
/2
y−3
15y = 45x + 60 is x=
1
/3
y+
−4
/3
Step-by-step explanation: