Answer:
<h3>The diameter is 4cm</h3>
Step-by-step explanation:
Volume of a sphere is

Where r is the radius
diameter = radius × 2
To find the diameter we must first find the radius
Volume = 34cm³
That's
![34 = \frac{4}{3} \pi {r}^{3} \\ \\ 34 \times 3 = 4\pi {r}^{3} \\ \\ 102 = 4\pi {r}^{3} \\ {r}^{3} = \frac{102}{4} \pi \\ \\ r = \sqrt[3]{ \frac{51}{2\pi}} \\ \\ r = 2.01 \\ \\ r = 2.0 cm](https://tex.z-dn.net/?f=34%20%3D%20%20%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20%7Br%7D%5E%7B3%7D%20%20%5C%5C%20%20%5C%5C%2034%20%5Ctimes%203%20%3D%204%5Cpi%20%7Br%7D%5E%7B3%7D%20%20%5C%5C%20%20%5C%5C%20102%20%3D%204%5Cpi%20%7Br%7D%5E%7B3%7D%20%20%5C%5C%20%20%7Br%7D%5E%7B3%7D%20%20%20%3D%20%5Cfrac%7B102%7D%7B4%7D%20%5Cpi%20%5C%5C%20%20%5C%5C%20r%20%3D%20%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B51%7D%7B2%5Cpi%7D%7D%20%20%5C%5C%20%20%5C%5C%20r%20%3D%202.01%20%5C%5C%20%20%5C%5C%20r%20%3D%202.0%20cm)
Diameter = 2 × 2cm
<h3>= 4cm</h3>
Hope this helps you
Find the critical points of f(y):Compute the critical points of -5 y^2
To find all critical points, first compute f'(y):( d)/( dy)(-5 y^2) = -10 y:f'(y) = -10 y
Solving -10 y = 0 yields y = 0:y = 0
f'(y) exists everywhere:-10 y exists everywhere
The only critical point of -5 y^2 is at y = 0:y = 0
The domain of -5 y^2 is R:The endpoints of R are y = -∞ and ∞
Evaluate -5 y^2 at y = -∞, 0 and ∞:The open endpoints of the domain are marked in grayy | f(y)-∞ | -∞0 | 0∞ | -∞
The largest value corresponds to a global maximum, and the smallest value corresponds to a global minimum:The open endpoints of the domain are marked in grayy | f(y) | extrema type-∞ | -∞ | global min0 | 0 | global max∞ | -∞ | global min
Remove the points y = -∞ and ∞ from the tableThese cannot be global extrema, as the value of f(y) here is never achieved:y | f(y) | extrema type0 | 0 | global max
f(y) = -5 y^2 has one global maximum:Answer: f(y) has a global maximum at y = 0
Answer:
11.4
Step-by-step explanation:
40% of 38 is 15.2, 38-15.2=22.8. 22.8/2=11.4 (since there's two people)
The answer is D
Because I worked it out
The range is 25
That’s the answer