Answer:
The standard issue license plates that can be produced if there are no restrictions on the letters and numbers = 175760000
Step-by-step explanation:
If there are no restrictions, all numbers and letters are available to be used then. And with no restrictions, every number or letter can appear more than once.
There are 7 spaces available; 3 spaces for letters, 4 spaces for numbers
The different combination of letters and numbers then becomes,
26 × 26 × 26 × 10 × 10 × 10 × 10
This is because, all 26 letters (A to Z) can occupy the first space, the second space and the third space. And all 10 digits (0 to 9) can occupy the fourth space, the fifth space, the sixth space and the seventh space.
So, the standard issue license plates that can be produced if there are no restrictions on the letters and numbers = 26 × 26 × 26 × 10 × 10 × 10 × 10 = 175760000 different standard issue license plates.
They would each get 6 dollars and 66 cents :) ♥♥
2x+3x -9. You can simplify this to 5x-9.
Answer:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]: 
L'Hopital's Rule
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
We are given the limit:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D)
When we directly plug in <em>x</em> = 0, we see that we would have an indeterminate form:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D%20%3D%20%5Cfrac%7B0%7D%7B0%7D)
This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:
![\displaystyle \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos%282x%29%7D%20-%20%5Csqrt%5B3%5D%7Bcos%283x%29%7D%7D%7Bsin%28x%5E2%29%7D%20%3D%20%5Cdisplaystyle%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-sin%282x%29%7D%7B%5Csqrt%7Bcos%282x%29%7D%7D%20%2B%20%5Cfrac%7Bsin%283x%29%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B2xcos%28x%5E2%29%7D)
Plugging in <em>x</em> = 0 again, we would get:
![\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-sin%282x%29%7D%7B%5Csqrt%7Bcos%282x%29%7D%7D%20%2B%20%5Cfrac%7Bsin%283x%29%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B2xcos%28x%5E2%29%7D%20%3D%20%5Cfrac%7B0%7D%7B0%7D)
Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:
![\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-sin%282x%29%7D%7B%5Csqrt%7Bcos%282x%29%7D%7D%20%2B%20%5Cfrac%7Bsin%283x%29%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7D%7B2xcos%28x%5E2%29%7D%20%3D%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-%5Bcos%5E2%282x%29%20%2B%201%5D%7D%7B%5Bcos%282x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%20%2B%20%5Cfrac%7Bcos%5E2%283x%29%20%2B%202%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D%7D%7B2cos%28x%5E2%29%20-%204x%5E2sin%28x%5E2%29%7D)
Substitute in <em>x</em> = 0 once more:
![\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B%5Cfrac%7B-%5Bcos%5E2%282x%29%20%2B%201%5D%7D%7B%5Bcos%282x%29%5D%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%20%2B%20%5Cfrac%7Bcos%5E2%283x%29%20%2B%202%7D%7B%5Bcos%283x%29%5D%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D%7D%7B2cos%28x%5E2%29%20-%204x%5E2sin%28x%5E2%29%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D)
And we have our final answer.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits