But sin² θ = 1 – cos² θ. Substitute that for sin² θ into the equation above, then you get
25 · cos² θ = 16 · (1 – cos² θ)
25 · cos² θ = 16 – 16 · cos² θ
Isolate cos² θ:
25 · cos² θ + 16 · cos² θ = 16
(25 + 16) · cos² θ = 16
41 · cos² θ = 16
16 cos² θ = ——— 41
4² cos² θ = ———— (√41)²
Take square root of both sides:
4 cos θ = ± ——— √41
4 4 cos θ = – ——— or cos θ = ——— ✔ √41 √41
The sign of cos θ depends on which quadrant θ lies. Since you first have a positive value for tan θ, then that means θ lies either in the 1st or the 3rd quadrant.