The volume of the planter that measures 60 l, 60 w. 60 h (D) 216000 cm³
<u>Explanation:</u>
Length, l = 60 cm
Width, w = 60 cm
Height, h = 60 cm
Volume, v = ?
We know,
Volume = length ×width × height
Substitute the values in the formula.

Therefore, the volume of the planter is 216,000 cm³
Get the derivative:
<em>y</em> = (9 - <em>x</em>²)¹ʹ³
d<em>y</em>/d<em>x</em> = 1/3 (9 - <em>x</em>²)⁻²ʹ³ d/d<em>x</em> [9 - <em>x</em>²]
d<em>y</em>/d<em>x</em> = 1/3 (9 - <em>x</em>²)⁻²ʹ³ (-2<em>x</em>)
d<em>y</em>/d<em>x</em> = -2/3 <em>x</em> (9 - <em>x</em>²)⁻²ʹ³
Evaluate it at <em>x</em> = 1 :
d<em>y</em>/d<em>x</em> (1) = -2/3 • 8⁻²ʹ³
Since 8 = 2³, we have
8⁻²ʹ³ = 1 / 8²ʹ³ = 1 / (2³)²ʹ³ = 1 / 2² = 1/4
Then the tangent line has equation
<em>y</em> - 2 = 1/4 (<em>x</em> - 1) → <em>y</em> = 1/4 <em>x</em> + 7/4
Answer:
no it is 5
Step-by-step explanation:
Solve for x by simplifying both sides of the equation, then isolating the variable. x
=
5
Over 7 hours the temperature changed 35 degrees
35/7 gives you 5 degrees per hour
By applying the definitions of <em>trigonometric</em> functions, the <em>exact</em> values of the sine, secant and tangent of the point on the <em>terminal</em> side are
,
and
.
<h3>How to determine the exact values</h3>
In this question we need to find the exact values of three <em>trigonometric</em> functions associated with the <em>terminal</em> side of an angle. The following definitions are used:
Sine
(1)
Secant
(2)
Tangent
(3)
If we know that x = - 7 and y = 2, then the exact values of the three <em>trigonometric</em> functions:
Sine

Secant

Tangent

By applying the definitions of <em>trigonometric</em> functions, the <em>exact</em> values of the sine, secant and tangent of the point on the <em>terminal</em> side are
,
and
.
<h3>Remark</h3>
The statement reports typing errors, correct form is shown below:
<em>Let (x, y) = (- 7, 2) be a point on the terminal side of θ. Find the exact value of sin θ, sec θ and tan θ.</em>
To learn more on trigonometric functions: brainly.com/question/6904750
#SPJ1