<u><em>Answer:</em></u>
AC = 10sin(40°)
<u><em>Explanation:</em></u>
The diagram representing the question is shown in the attached image
Since the given triangle is a right-angled triangle, we can apply the special trig functions
<u>These functions are as follows:</u>
sin(θ) = opposite / hypotenuse
cos(θ) = adjacent / hypotenuse
tan(θ) = opposite / adjacent
<u>Now, in the given diagram:</u>
θ = 40°
AC is the side opposite to θ
AB = 10 in is the hypotenuse
<u>Based on these givens</u>, we will use the sin(θ) function
<u>Therefore:</u>

Assuming a d-heap means the order of the tree representing the heap is d.
Most of the computer applications use binary trees, so they are 2-heaps.
A heap is a complete tree where each level is filled (complete) except the last one (leaves) which may or may not be filled.
The height of the heap is the number of levels. Hence the height of a binary tree is Ceiling(log_2(n)), for example, for 48 elements, log_2(48)=5.58.
Ceiling(5.58)=6. Thus a binary tree of 6 levels contains from 2^5+1=33 to 2^6=64 elements, and 48 is one of the possibilities. So the height of a binary-heap with 48 elements is 6.
Similarly, for a d-heap, the height is ceiling(log_d(n)).
Answer:
b. 1
Step-by-step explanation:
Step 1: Define
y(x) = 4x
y(x) = 4
Step 2: Substitute and Evaluate
4 = 4x
x = 1
Answer:
ΔNAS≅ΔSEN by SSA axiom of congruency.
Step-by-step explanation:
Consider ΔNAS and ΔSEN,
NS=SN(Common ie . Both are the same side)
SA=NE( Given in the question that SA≅ NE)
∠SNA=∠NSE( Due to corresponding angle property where SE ║ NA)
Therefore, ΔNAS ≅ΔSEN by SSA axiom of congruency.
∴ NA≅SA by congruent parts of congruent Δ. Hence, proved.