The only vertical forces are weight and normal force, and they balance since the surface is horizontal. The horizontal forces are the applied force (uppercase F) in the direction the block slides and the frictional force (lowercase f) in the opposite direction.
Apply Newton's 2nd Law in the horizontal direction:
ΣF = ma
F - f = ma
where f = µmg
F - µmg = ma
F = m(a +µg)
F = (20 kg)(1.4 m/s² + 0.28(9.8 m/s²)
F = 83 N
Answer:
False
Explanation:
I learned it the hard way trust me T^T
Answer:
5. Quadruple
Explanation:
The electrostatic force between two charged particles is given by:

where
k is the Coulomb's constant
q1, q2 are the two charges
r is the separation between the charges
If the distance between the charges is reduced to half,

So the new force will be

So, the force will quadruple.
4. The Coyote has an initial position vector of
.
4a. The Coyote has an initial velocity vector of
. His position at time
is given by the vector

where
is the Coyote's acceleration vector at time
. He experiences acceleration only in the downward direction because of gravity, and in particular
where
. Splitting up the position vector into components, we have
with


The Coyote hits the ground when
:

4b. Here we evaluate
at the time found in (4a).

5. The shell has initial position vector
, and we're told that after some time the bullet (now separated from the shell) has a position of
.
5a. The vertical component of the shell's position vector is

We find the shell hits the ground at

5b. The horizontal component of the bullet's position vector is

where
is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for
:
