The period of the pendulum doesn't determine the length of the string.
It's the other way around.
The period of the pendulum is proportional to the square root of its length.
So if you want to triple the period, you have to make the string nine times
as long as it is now.
Potential and kinetic energy both decrease with the acorn's falling potential and kinetic energy.
The acorn's potential energy is at its peak when it reaches the top of the tree, yet its kinetic energy is zero (i.e., it is not accelerating).
The height of the ball reduces along with the potential energy as the acorn tumbles down the tree, but the kinetic energy rises (energy due to motion)
The height will be 0 and the kinetic and potential energy will be zero at the ground. This demonstrates that as an item falls, both potential and kinetic energy are lost.
Learn more about Energy here
brainly.com/question/13881533
#SPJ4
Answer:
The net emissions rate of sulfur is 1861 lb/hr
Explanation:
Given that:
The power or the power plant = 750 MWe
Since the power plant with a thermal efficiency of 42% (i.e. 0.42) burns 9000 Btu/lb coal, Then the energy released per one lb of the coal can be computed as:

= 3988126.8 J
= 3.99 MJ
Also, The mass of the burned coal per sec can be calculated by dividing the molecular weight of the power plant by the energy released per one lb.
i.e.
The mass of the coal that is burned per sec 
The mass of the coal that is burned per sec = 187.97 lb/s
The mass of sulfur burned 
= 2.067 lb/s
To hour; we have:
= 7444 lb/hr
However, If a scrubber with 75% removal efficiency is utilized,
Then; the net emissions rate of sulfur is (1 - 0.75) × 7444 lb/hr
= 0.25 × 7444 lb/hr
= 1861 lb/hr
Hence, the net emissions rate of sulfur is 1861 lb/hr
Answer:
data storage, OLEDS, and wires
Explanation: