1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhuklara [117]
3 years ago
14

Need help lease!!!!!!!

Mathematics
1 answer:
Viefleur [7K]3 years ago
8 0

(11)

the equation of a line in point- slope form is

y = mx + c ( m is the slope and c the y-intercept

thus y = 4x + 3 ← in slope-intercept form

the equation of a line in point- slope form is

y - b = m(x - a ) ( m is slope and (a, b ) a point on the line )

thus y - 3 = 4 ( x - 0 ) or y - 3 = 4x ← in point- slope form

the equation of a line in standard form is

Ax + By = C ( a is a positive integer and B, C are integers

rearrange y - 3 = 4x into this form

4x - y = - 3 ← in standard form

(12)

y = - 2x - 1 ← in slope-intercept form

y + 1 = - 2x ← in point- slope form

2x + y = - 1 ← in standard form




You might be interested in
<img src="https://tex.z-dn.net/?f=%20%5Cunderline%7B%20%5Cunderline%7B%20%5Ctext%7Bquestion%7D%7D%7D%20%3A%20" id="TexFormula1"
Inga [223]

Answer:

y=-\sqrt{3}x+2

Step-by-step explanation:

We want to find the equation of a straight line that cuts off an intercept of 2 from the y-axis, and whose perpendicular distance from the origin is 1.

We will let Point M be (x, y). As we know, Point R will be (0, 2) and Point O (the origin) will be (0, 0).

First, we can use the distance formula to determine values for M. The distance formula is given by:

\displaystyle d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Since we know that the distance between O and M is 1, d=1.

And we will let M(x, y) be (x₂, y₂) and O(0, 0) be (x₁, y₁). So:

\displaystyle 1=\sqrt{(x-0)^2+(y-0)^2}

Simplify:

1=\sqrt{x^2+y^2}

We can solve for y. Square both sides:

1=x^2+y^2

Rearranging gives:

y^2=1-x^2

Take the square root of both sides. Since M is in the first quadrant, we only need to worry about the positive case. Therefore:

y=\sqrt{1-x^2}

So, Point M is now given by (we substitute the above equation for y):

M(x,\sqrt{1-x^2})

We know that Segment OM is perpendicular to Line RM.

Therefore, their <em>slopes will be negative reciprocals</em> of each other.

So, let’s find the slope of each segment/line. We will use the slope formula given by:

\displaystyle m=\frac{y_2-y_1}{x_2-x_1}

Segment OM:

For OM, we have two points: O(0, 0) and M(x, √(1-x²)). So, the slope will be:

\displaystyle m_{OM}=\frac{\sqrt{1-x^2}-0}{x-0}=\frac{\sqrt{1-x^2}}{x}

Line RM:

For RM, we have the two points R(0, 2) and M(x, √(1-x²)). So, the slope will be:

\displaystyle m_{RM}=\frac{\sqrt{1-x^2}-2}{x-0}=\frac{\sqrt{1-x^2}-2}{x}

Since their slopes are negative reciprocals of each other, this means that:

m_{OM}=-(m_{RM})^{-1}

Substitute:

\displaystyle \frac{\sqrt{1-x^2}}{x}=-\Big(\frac{\sqrt{1-x^2}-2}{x}\Big)^{-1}

Now, we can solve for x. Simplify:

\displaystyle \frac{\sqrt{1-x^2}}{x}=\frac{x}{2-\sqrt{1-x^2}}

Cross-multiply:

x(x)=\sqrt{1-x^2}(2-\sqrt{1-x^2})

Distribute:

x^2=2\sqrt{1-x^2}-(\sqrt{1-x^2})^2

Simplify:

x^2=2\sqrt{1-x^2}-(1-x^2)

Distribute:

x^2=2\sqrt{1-x^2}-1+x^2

So:

0=2\sqrt{1-x^2}-1

Adding 1 and then dividing by 2 yields:

\displaystyle \frac{1}{2}=\sqrt{1-x^2}

Then:

\displaystyle \frac{1}{4}=1-x^2

Therefore, the value of x is:

\displaystyle \begin{aligned}\frac{1}{4}-1&=-x^2\\-\frac{3}{4}&=-x^2\\ \frac{3}{4}&=x^2\\ \frac{\sqrt{3}}{2}&=x\end{aligned}

Then, Point M will be:

\begin{aligned} \displaystyle M(x,\sqrt{1-x^2})&=M(\frac{\sqrt{3}}{2}, \sqrt{1-\Big(\frac{\sqrt{3}}{2}\Big)^2)}\\M&=(\frac{\sqrt3}{2},\frac{1}{2})\end{aligned}

Therefore, the slope of Line RM will be:

\displaystyle \begin{aligned}m_{RM}&=\frac{\frac{1}{2}-2}{\frac{\sqrt{3}}{2}-0} \\ &=\frac{\frac{-3}{2}}{\frac{\sqrt{3}}{2}}\\&=-\frac{3}{\sqrt3}\\&=-\sqrt3\end{aligned}

And since we know that R is (0, 2), R is the y-intercept of RM. Then, using the slope-intercept form:

y=mx+b

We can see that the equation of Line RM is:

y=-\sqrt{3}x+2

6 0
3 years ago
Read 2 more answers
What is 8.25 rounded off to the nearest whole number
Ugo [173]

Answer:

8

Step-by-step explanation:.25 is lower than .5

7 0
3 years ago
Can someone please help me
MrMuchimi

Answer:

Men it's a really long process and I've just woken up men

6 0
3 years ago
Read 2 more answers
Shilo is trying to compute the value of 27 + 55 + 13. She adds 27 + 13 to get 40, and then adds on 55. Which of the following pr
kodGreya [7K]
The answer should be A
5 0
3 years ago
The cost of mining gold for a mining company is $920 per gram.How much will it cost the company to mine 0.2 kilograms?
Aneli [31]

Answer:

$184

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • A coffee mixture contains beans that sell for $0.08 per pound and $0.32 per pound. If 110 pounds of beans create a mixture that
    14·1 answer
  • Find the exact value of cos285 using the fact that 285=330-45
    13·1 answer
  • X divided by x+3 equals 4 divided by x+5
    12·1 answer
  • A new episode of Charlie's favorite TV series will be aired 25 minutes after Charlie gets home from school. Which method should
    13·2 answers
  • Write 5.78 as a mixed number in simplest form.
    5·2 answers
  • The tallest living man at one time had a height of 262 cm. The shortest living man at that time had a height of 68.6 cm. Heights
    15·2 answers
  • Write the fraction in simplest form<br>5/5
    13·2 answers
  • Whoever answers first ill give Brainliest
    13·1 answer
  • Help i’ll give brainliest please hurry
    6·1 answer
  • Solve the inequality<br> -2(5x + 1) &gt; 48
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!