Answer:
B. 5 m/s
Step-by-step explanation:
Formula for constant velocity

plug in the values you have:

so B. 5 m/s
Answer:
0.08
Step-by-step explanation:
![{5}^{ - 2} \times \sqrt[3]{8} \\ \\ = {5}^{ - 2} \times \sqrt[3]{ {2}^{3} } \\ \\ = \frac{1}{ {5}^{2} } \times 2 \\ \\ = \frac{1}{25} \times 2 \\ \\ = \frac{2}{25} \\ \\ =0.08](https://tex.z-dn.net/?f=%20%7B5%7D%5E%7B%20-%202%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B8%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%7B5%7D%5E%7B%20-%202%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B%20%7B2%7D%5E%7B3%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B1%7D%7B%20%7B5%7D%5E%7B2%7D%20%7D%20%20%5Ctimes%202%20%5C%5C%20%20%5C%5C%20%20%20%3D%20%5Cfrac%7B1%7D%7B25%7D%20%20%5Ctimes%202%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B2%7D%7B25%7D%20%5C%5C%20%5C%5C%20%3D0.08)
We are given the system of equations -:

Since the second equation is y-isolated equation. It can be substituted as y = 6x+22 in the first equation.

Expand 3 in the expression so we can combine like terms and isolate x-variable.

Then combine like terms.

Get rid of 66 from the left side by subtracting both sides by itself.

To finally isolate the variable, divide both sides by 20 so we can leave x only on the left side.

Simplify to the simplest form.

Normally, we have to find the y-value too but since we only find x-value. The answer is x = -4.
Answer
I hope this helps! If you have any questions or doubts regarding my answer, explanation or system of equations, feel free to ask!
We have been given that a culture of bacteria has an initial population of 22,000 bacteria and doubles every 5 hours. Using the formula
, where P(t) is the population after t hours,
is the initial population, t is the time in hours and d is the doubling time.
We are asked to find the population of bacteria after 17 hours.
First of all, we will substitute our given values in doubling life formula as:

Now to find population of bacteria after 17 hours, we will substitute
in our formula as:





Therefore, the bacteria population will be 232,233 after 17 hours.