1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesya [120]
4 years ago
8

Please. You can help me with this problem. Thanks.

Mathematics
2 answers:
Aloiza [94]4 years ago
5 0

Answer:

x=90 because it is a right angle and y=64 because it it an acute angle.

Step-by-step explanation:

erma4kov [3.2K]4 years ago
3 0

Answer:

A

Step-by-step explanation:

You might be interested in
Number 11 and 14, I need help on please.
Ulleksa [173]
Consider this option:
11) 360-(95+32)=233; answer D;
14) if 2x+2=x+11, then x=9, and y-2=9+2, y=13; answer A.
6 0
3 years ago
Given that<br> a = 5,b = –2 and c = -2<br> work out<br> 2b – 3ac
lapo4ka [179]

Answer:

2b - 3ac \\ a = 5 \:  \:  \:  \: b =  - 2 \:  \:  \: c =  - 2 \\( 2 \times  - 2 )- (3 \times 5 \times  - 2) \\  (- 4) - ( - 30) \\  - 4 + 30 = 26

4 0
3 years ago
Initially 100 milligrams of a radioactive substance was present. After 8 hours the mass had decreased by 2%. If the rate of deca
4vir4ik [10]

Answer:

The half life of the radioactive substance is 277 hours.

Step-by-step explanation:

initial mass, No = 100 mg

mass decayed = 2% = 2 mg

Mass remained , N = 98 mg

time, t = 8 hours

Let the half life is T.

Use the equation of radioactivity

N = No\times e^{\frac{-0.693 t}{T}}\\\\98 = 100 \times e^{\frac{-0.693\times 8}{T}}\\\\0.98 = e^{\frac{-5.54}{T}}\\\\ln 0.98 = -\frac{5.54}{T}\\\\-0.02= -\frac{5.54}{T}\\\\T =  277 hours  

5 0
3 years ago
Solve 3k^2=8k+8,using completing the square method ​
GenaCL600 [577]

Answer:

3k2=8k+8 

Two solutions were found :

 k =(8-√160)/6=(4-2√ 10 )/3= -0.775

 k =(8+√160)/6=(4+2√ 10 )/3= 3.442

Reformatting the input :

Changes made to your input should not affect the solution:

 (1): "k2"   was replaced by   "k^2". 

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

                     3*k^2-(8*k+8)=0 

Step by step solution :

Step  1  :

Equation at the end of step  1  :

3k2 - (8k + 8) = 0

Step  2  :

Trying to factor by splitting the middle term

 2.1     Factoring  3k2-8k-8 

The first term is,  3k2  its coefficient is  3 .

The middle term is,  -8k  its coefficient is  -8 .

The last term, "the constant", is  -8 

Step-1 : Multiply the coefficient of the first term by the constant   3 • -8 = -24 

Step-2 : Find two factors of  -24  whose sum equals the coefficient of the middle term, which is   -8 .

     -24   +   1   =   -23     -12   +   2   =   -10     -8   +   3   =   -5     -6   +   4   =   -2     -4   +   6   =   2     -3   +   8   =   5     -2   +   12   =   10     -1   +   24   =   23

Observation : No two such factors can be found !! 

Conclusion : Trinomial can not be factored

Equation at the end of step  2  :

3k2 - 8k - 8 = 0

Step  3  :

Parabola, Finding the Vertex :

 3.1      Find the Vertex of   y = 3k2-8k-8

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 3 , is positive (greater than zero). 

 Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions. 

 Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex. 

 For any parabola,Ak2+Bk+C,the  k -coordinate of the vertex is given by  -B/(2A) . In our case the  k  coordinate is   1.3333  

 Plugging into the parabola formula   1.3333  for  k  we can calculate the  y -coordinate : 

  y = 3.0 * 1.33 * 1.33 - 8.0 * 1.33 - 8.0 

or   y = -13.333

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = 3k2-8k-8

Axis of Symmetry (dashed)  {k}={ 1.33} 

Vertex at  {k,y} = { 1.33,-13.33}  

 k -Intercepts (Roots) :

Root 1 at  {k,y} = {-0.77, 0.00} 

Root 2 at  {k,y} = { 3.44, 0.00} 

Solve Quadratic Equation by Completing The Square

 3.2     Solving   3k2-8k-8 = 0 by Completing The Square .

 Divide both sides of the equation by  3  to have 1 as the coefficient of the first term :

   k2-(8/3)k-(8/3) = 0

Add  8/3  to both side of the equation : 

   k2-(8/3)k = 8/3

Now the clever bit: Take the coefficient of  k , which is  8/3 , divide by two, giving  4/3 , and finally square it giving  16/9 

Add  16/9  to both sides of the equation :

  On the right hand side we have :

   8/3  +  16/9   The common denominator of the two fractions is  9   Adding  (24/9)+(16/9)  gives  40/9 

  So adding to both sides we finally get :

   k2-(8/3)k+(16/9) = 40/9

Adding  16/9  has completed the left hand side into a perfect square :

   k2-(8/3)k+(16/9)  =

   (k-(4/3)) • (k-(4/3))  =

  (k-(4/3))2 

Things which are equal to the same thing are also equal to one another. Since

   k2-(8/3)k+(16/9) = 40/9 and

   k2-(8/3)k+(16/9) = (k-(4/3))2 

then, according to the law of transitivity,

   (k-(4/3))2 = 40/9

We'll refer to this Equation as  Eq. #3.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of

   (k-(4/3))2   is

   (k-(4/3))2/2 =

  (k-(4/3))1 =

   k-(4/3)

Now, applying the Square Root Principle to  Eq. #3.2.1  we get:

   k-(4/3) = √ 40/9 

Add  4/3  to both sides to obtain:

   k = 4/3 + √ 40/9 

Since a square root has two values, one positive and the other negative

   k2 - (8/3)k - (8/3) = 0

   has two solutions:

  k = 4/3 + √ 40/9 

   or

  k = 4/3 - √ 40/9 

Note that  √ 40/9 can be written as

  √ 40  / √ 9   which is √ 40  / 3 

Solve Quadratic Equation using the Quadratic Formula

 3.3     Solving    3k2-8k-8 = 0 by the Quadratic Formula .

 According to the Quadratic Formula,  k  , the solution for   Ak2+Bk+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                     

            - B  ±  √ B2-4AC

  k =   ————————

                      2A 

  In our case,  A   =     3

                      B   =    -8

                      C   =   -8 

Accordingly,  B2  -  4AC   =

                     64 - (-96) =

                     160

Applying the quadratic formula :

               8 ± √ 160 

   k  =    —————

                    6

Can  √ 160 be simplified ?

Yes!   The prime factorization of  160   is

   2•2•2•2•2•5  

To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a squarei.e. second root).

√ 160   =  √ 2•2•2•2•2•5   =2•2•√ 10   =

                ±  4 • √ 10 

  √ 10   , rounded to 4 decimal digits, is   3.1623

 So now we are looking at:

           k  =  ( 8 ± 4 •  3.162 ) / 6

Two real solutions:

 k =(8+√160)/6=(4+2√ 10 )/3= 3.442 

or:

 k =(8-√160)/6=(4-2√ 10 )/3= -0.775 

Two solutions were found :

 k =(8-√160)/6=(4-2√ 10 )/3= -0.775

 k =(8+√160)/6=(4+2√ 10 )/3= 3.442

5 0
3 years ago
Read 2 more answers
3(2x + 4) = 72 <br><br> What’s x
Tresset [83]

Answer: x = 6

Step-by-step explanation:

(3)(2x) = 6x

(3)(4) = 12

12-12 cancels out

72-12 = 60

6x/6 cancels the 6 out

60/6 = 6

x = 6

6 0
3 years ago
Other questions:
  • How can I simplify this answer?
    10·1 answer
  • A rectangular block of copper metal mass is 1896 g. The dimensions of the points
    6·1 answer
  • Find the 100th term in the sequence -3,-5,-7,-9... <br> a.195 <br> b.-201 <br> c.201 <br> d.-195
    13·1 answer
  • What is a35 for the arithmetic sequence presented in the table below?
    8·1 answer
  • 4. Simplify: (4 – 5) – (13 – 18 + 2).<br><br> (a) -1,<br><br> (b) –2,<br><br> (c) 1,<br><br> (d) 2.
    10·2 answers
  • What is the ratio in simplest form of pitchers of iced tea to tea bags?
    12·1 answer
  • HELP ILL GIVE 18 POINTS
    14·1 answer
  • Help me fast!! I need to get a 90 on it
    15·1 answer
  • Are these two expressions equivalent? Use the
    7·1 answer
  • The measure of an exterior angle of a triangle is zº. The measure of the adjacent interior angle is at least twice 2". Which of
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!