1. air components change from place to place, while water will just stay the same
2. Water doesn't have nor show individual properties, but air does show that it has it's own property
3. You can separate different gases from air physically, but with water you must pass electricity through it.
Don't take my word for it, this is just what I learned back in middle school.
The reducing agent in the reaction 2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) is lithium (Li).
The general reaction is:
2Li(s) + Fe(CH₃COO)₂(aq) → 2LiCH₃COO(aq) + Fe(s) (1)
We can write the above reaction in <u>two reactions</u>, one for oxidation and the other for reduction:
Li⁰(s) → Li⁺(aq) + e⁻ (2)
Fe²⁺(aq) + 2e⁻ → Fe⁰(s) (3)
We can see that Li⁰ is oxidizing to Li⁺ (by <u>losing</u> one electron) in the lithium acetate (<em>reaction 2</em>) and that Fe²⁺ in iron(II) acetate is reducing to Fe⁰ (by <u>gaining</u> two <em>electrons</em>) (<em>reaction 3</em>).
We must remember that the reducing agent is the one that will be oxidized by <u>reducing another element</u> and that the oxidizing agent is the one that will be reduced by <u>oxidizing another species</u>.
In reaction (1), the<em> reducing agent</em> is <em>Li</em> (it is oxidizing to Li⁺), and the <em>oxidizing agent </em>is<em> Fe(CH₃COO)₂</em> (it is reducing to Fe⁰).
Therefore, the reducing agent in reaction (1) is lithium (Li).
Learn more here:
I hope it helps you!
Answer:
filtering
Explanation:
you're pouring the mixture through muslin cloth to keep the particles and bigger peaces out of the soap.
Autoionization Reactions are those reactions in which ions or molecules ionizes spontaneously without adding any external reagent.
For Example,
Autoionization of water.
H₂O + H₂O ⇆ H₃O⁺ + OH⁻
Autoionization reaction of Methanol is shown below,
Answer:
The answer is bacteria (microorganisms)
Explanation:
Bacteria can't be seen with the naked eye but it's part of a species that make up the biodiversity.