Answer:
Thiamine pyrophosphate (derived from vitamin B1) is a coenzyme required for the activity of pyruvate dehydrogenase enzyme complex.
Explanation:
Pyruvate is the end product of glycolysis. During aerobic cellular respiration, pyruvate is oxidatively decarboxylated into acetyl CoA which in turn enters the Kreb's cycle. Oxidative decarboxylation of pyruvate is carried out by enzyme complex pyruvate dehydrogenase (PDH). The first step is simple decarboxylation and is catalyzed by pyruvate decarboxylase of the PDH complex.
The enzyme pyruvate decarboxylase and has a tightly bound coenzyme, thiamine pyrophosphate. Thiamine pyrophosphate is derived from vitamin B1. Lack of vitamin B1 in the human diet leads to beriberi that is characterized by an increased concentration of pyruvate in blood urine since oxidative decarboxylation cannot occur due to lack of the coenzyme thiamine pyrophosphate.
Answer:
I will give you an explanation, and try to figure it out!!
Explanation:
Incomplete dominance can occur because neither of the two alleles is fully dominant over the other, or because the dominant allele does not fully dominate the recessive allele. This results in a phenotype that is different from both the dominant and recessive alleles, and appears to be a mixture of both.
Answer:
A pheochromocytoma is a tumor in the adrenal gland. It causes the gland to make too much of the hormones epinephrine and norepinephrine.
Explanation:
PART 1
1. The answer is low frequency electromagnetic waves are able to go around obstacles due to their larger wavelengths. This characteristic of lower frequency waves is due to their ability to diffract around obstacles such as buildings and hills. Therefore, they transmit over long distances unlike high frequency electromagnetic waves.
2. One disadvantage is interference. Electromagnetic waves of the same frequency transmitted at the same time will interfere with one other and therefore the signal will be lost or scrambled. Other electromagnetic waves such as microwaves are affected (interfered with) by weather elements.
3. Analogue signals are continuous signals with wave-like properties while digital signals are discrete signals or pulse (ons (1s) and offs (0s) that represent bits). Analogue signal is represented by a sine-wave while digital signal is represented by discrete squares waves.
4. Digital signals are less immune to eavesdropping unlike analogue signals. Analogue signal is also more prone to distortion unlike digital signal. Digital signals transmit more data than analogue signals. Digital signal draw less energy to transmit compared to analogue signal.
5. Broadcasting of TV is nowadays using digital signals due to the high number of available channels. Computers and the interne utilize digital signaling to transmit data. Controls systems such as radar system also use aspects of analogue waves. Sensors also utilize analogue waves especially transducers such as seismology equipment.
PART 2
1. One way is by sending radio waves to probes sent out in space to give them commands during exploration. Radio telescopes also pick up naturally-occurring radio waves from space and analyze the data to make conclusions about space and the astronomical objects.
2. Radio waves are used in communication by transmitting data over long distances. One example is its use TV transmission. Another is through military defense of airspace. The radio waves are used to detect enemy intrusion into restricted airspaces using radar.
3. It is common that signal from the environment will be in analogue signal format. The conversion to digital signals allows for the digital equipment in the telescope to interpret and analyze the data. Telescopes prefer digital equipment because they consume less power, handle more data, and are less prone to intrusion, and distortion, hence more secure to analogue equipment.
Advancement in technology over the years has definitely helped in improving the diagnosis of a person’s health condition.
<u>Explanation:</u>
Internal injuries can be easily diagnosed using methods like x-Ray and scanning. Technological advancements have helped immensely in the field of oncology. Detection of tumors has become easy with the arrival of computerized tomography and MRI scanning.
CT scans give a better image of internal organs than X-Rays and detection of conditions like heart disease, cancer, emphysema, liver disease etc has become easier. Magnetic Resonance Imaging also gives a clear picture of the internal organs.