Answer:
"A Type I error in the context of this problem is to conclude that the true mean wind speed at the site is higher than 15 mph when it actually is not higher than 15 mph."
Step-by-step explanation:
A Type I error happens when a true null hypothesis is rejected.
In this case, as the claim that want to be tested is that the average wind speed is significantly higher than 15 mph, the null hypothesis has to state the opposite: the average wind speed is equal or less than 15 mph.
Then, with this null hypothesis, the Type I error implies a rejection of the hypothesis that the average wind speed is equal or less than 15 mph. This is equivalent to say that there is evidence that the average speed is significantly higher than 15 mph.
"A Type I error in the context of this problem is to conclude that the true mean wind speed at the site is higher than 15 mph when it actually is not higher than 15 mph."
Step-by-step explanation:

Angle C must = [180 - 73 - 57 ] = [180 - 130] = 50°
And using rhw Law if Sines, we have.....
AB/sin C = AC/sin B → 24/sin(50) = AC/sin(73) → AC = 24*sin(73)/sin(50) = about 29.96 in
The discriminant can be found using the formula b^2-4ac
First put your equation in standard form, where all your values are on one side, and just add f(x) or y in front of your equation.
y= 8p^2-8p+2
The first value of your equation is a (a=8)
The second term of your equation is b (b=-8)
The last term of your equation is c (c=2)
Plug in the values to the discriminant equation b^2-4ac
1. 1000 2. 0.001. hope this helps.
Answer:
sure (✿^‿^)
Step-by-step explanation:
。◕‿◕。
Hi! how are you?