The Oxidation-Fermentation Test is used to differentiate bacteria built on their capability to oxidize or ferment specific sugars.
Once microbes are inoculated,-One tube is sealed with a layer of sterile mineral oil to promote anaerobic growth and fermentation.-The other tube is left unsealed to allow aerobic growth and oxidation.
Organisms able to ferment the carbohydrate or ferment and oxidize the carbohydrate will turn the sealed and unsealed yellow throughout.
Organisms able only to oxidize the sugar will turn the unsealed yellow medium and leave the sealed medium green or blue.
Fragile fermenters will convert both tubes slightly yellow at the top.
Organisms not able to metabolize the sugar will either produce no color change or will turn the medium blue due to alkaline products from amino acids degradation.
Since Pair #1 showed complete yellowing for sealed and unsealed, these Organisms able to ferment the carbohydrate or ferment and oxidize the carbohydrate. So our interpretation will be that the organism has: Oxidation and fermentation OR fermentation only.
For tubes #2 and #3, the sealed tubes were green throughout suggests that they need oxygen for aerobic growth, and the fact that their unsealed tubes showed light yellowing is evidence for oxidation. Sealed - Green and Unseal - Yellow. Our interpretation for these pairs of tubes would be : Oxidation
Tube 1 can be either Oxidation and fermentation OR fermentation only. So reliability of this needs to be confirmed more with additional testing.
Tubes 2 and 3 are most reliable because they can only be oxidation only and no fermentation.
During bleeding, both formed elements (platelets, white blood cells, red blood cells) and plasma are lost from the circulatory system. They are lost proportionally, so initially there is no change in hematocrit.
Hematocrit is the percentage of the blood volume made up of elements (Hct = cell volume/blood volume). During dehydration, only water and electrolytes are lost, and the number of cells remains constant - the same number of cells in a smaller volume leads to an increase in hematocrit. When the body tries to restore blood volume, the first thing to recirculate is water from the ECF and this increases the amount of water without increasing the amount of red blood cells, so the compensatory mechanism causes the hematocrit to fall.
Learn more about Hematocrit on:
brainly.com/question/13739588
#SPJ4
<u>Answer</u>: C) Hydrophobic interior, hydrophilic exterior
<u>Explanation</u>:
- The <em>plasma membrane</em> of the cell defines its boundary and separates its internal components from the external environment.
- The basic components of the plasma membrane include phospholipids, carbohydrates, proteins, and cholesterol.
- The plasma membrane is a phospholipid bilayer, with <em>hydrophobic</em> tails of the phospholipid projecting <em>inwards</em> and the <em>hydrophilic</em> exterior in contact with the external environment.
- <em>Due to this, the plasma membrane has a hydrophobic interior and hydrophilic exterior. </em>
Calm waters <span>theory of organizational change</span>
Answer:
Relative humidity, RH
Explanation:
RH, is the ratio of the amount of water vapor present in the air to the maximum amount of water vapor needed for saturation at a certain pressure and temperature