Answer:
The graphs of the two function will not intersect.
Step-by-step explanation:
We are given a quadratic function f(x).
Also g(x) is given by a set of values as:
x g(x)
1 -1
2 0
3 1
As g(x) is a linear function hence we find out the equation of g(x) by the slope intercept form of a line: y=mx+c
let g(x)=y
when x=1 , g(x)=-1
-1=m+c----(1)
when x=2 , g(x)=0
0=2m+c------(2)
Hence, on solving (1) and (2) by method of elimination we get:
m=1 and c=-2
Hence, the equation of g(x) is:
g(x)=x-2
So clearly from the graph we could see that the graph of the two functions will never intersect.
Hey ! there
Answer:
- Value of missing side i.e. TE is <u>1</u><u>2</u><u> </u><u>feet</u>
Step-by-step explanation:
In this question we are provided with a <u>right</u><u> </u><u>angle </u><u>triangle</u> having <u>TS </u><u>-</u><u> </u><u>35</u><u> </u><u>ft </u><u>and</u><u> </u><u>SE </u><u>-</u><u> </u><u>37</u><u> </u><u>ft </u>. And we are asked to find the missing side that is <u>TE </u>using Pythagorean Theorem .
<u>Pythagorean Theorem :</u> -
According to Pythagorean Theorem sum of squares of perpendicular and base is equal to square of hypotenuse in a right angle triangle i.e.
<u>Where </u><u>,</u>
- H refers to <u>Hypotenuse</u>
- P refers to <u>Perpendicular</u>
<u>Solution</u><u> </u><u>:</u><u> </u><u>-</u>
In the given triangle ,
- Perpendicular = <u>TS </u><u>(</u><u> </u><u>35</u><u> </u><u>feet </u><u>)</u>
- Hypotenuse = <u>SE </u><u>(</u><u> </u><u>37</u><u> </u><u>feet </u><u>)</u>
Now applying Pythagorean Theorem :

Substituting values :

Simplifying it ,

Subtracting 1225 on both sides :

We get ,

Applying square root to both sides :

We get ,

- <u>Henceforth</u><u> </u><u>,</u><u> </u><u>value </u><u>of </u><u>missing </u><u>side </u><u>is </u><em><u>1</u></em><em><u>2</u></em><em><u> </u></em><em><u>feet </u></em><em><u>.</u></em>
<u>Verifying</u><u> </u><u>:</u><u> </u><u>-</u>
Now we are verifying our answer using Pythagorean Theorem . We know that according to Pythagorean Theorem ,
Substituting value of SE , TS and TE :
- 37² = 35² + <u>1</u><u>2</u><u>²</u>
<u>Therefore</u><u> </u><u>,</u><u> </u><u>our</u><u> answer</u><u> is</u><u> correct</u><u> </u><u>.</u>
<h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>
The inverse for function of f ⬇️
Answer:
Pages 100 and 101
Step-by-step explanation:
Round 201 to 200 (to make it easier).
Divide 200 by 2, because it is 2 pages.
You are left with 100.
100 is one of the pages, but because you rounded down 1 number, the other number must be 101, because the pages are back to back.
I hope this made sense, this is just how I figured it out. :)