Compute the differential for both sides:
4<em>y</em> - 3<em>xy</em> + 8<em>x</em> = 0
→ 4 d<em>y</em> - 3 (<em>y</em> d<em>x</em> + <em>x</em> d<em>y</em>) + 8 d<em>x</em> = 0
Solve for d<em>y</em> :
4 d<em>y</em> - 3<em>y</em> d<em>x</em> - 3<em>x</em> d<em>y</em> + 8 d<em>x</em> = 0
(4 - 3<em>x</em>) d<em>y</em> + (8 - 3<em>y</em>) d<em>x</em> = 0
When <em>x</em> = 0, we have
4<em>y</em> - 3•0<em>y</em> + 8•0 = 0 → 4<em>y</em> = 0 → <em>y</em> = 0
and with d<em>x</em> = 0.05, we get
(4 - 3•0) d<em>y</em> + (8 - 3•0) • 0.05 = 0
→ 4 d<em>y</em> + 0.4 = 0
→ 4 d<em>y</em> = -0.4
→ d<em>y</em> = -0.1
Answer:
Discriminant = 93, two real roots/solutions
Step-by-step explanation:
Discriminant = b² - 4ac = (9)² - 4(3)(-1) = 81 + 12 = 93
Since 93>0, the quadratic equation has two real roots/solutions.
The answer is 600
25 x 4 =100
150 x 4 = 600
checking work
.25 x 600= 150
Answer:
1) Perpendicular
2) Parallel
3) Neither
4) Neither
Step-by-step explanation:
V = lhr
V ÷ lh = lhr ÷ lh
V/lh = r
r = V/lh
Just divide both sides by what you want removed, leaving behind r.