Answer:
z = 2.1784 > 1.96,
Reject the null hypothesis
Step-by-step explanation:
For the males:
n1 = 162, x1 = 63
P1 = x 1/ n1 = 0.3889
For the Females:
n2 = 333,
x2 = 97
P 2 = x2/n2
= 0.2913
P 1= P2 Null hypothesis
P 1 is not equal to P 2 alternative hypothesis
Pooled proportion:
P= (x1 + x2) /( n1+ n2)
= (63 + 97) / (162 + 333)= 0.3232
Test statistics :
Z= (p1 - p2) /√p(1-p)× (1/n1 + 1/n2)
0.3889- 0.2913 / √0.3232 × 0.6768 × (1/162 +1/333)
=2.1784
c) Critical value :
Two tailed critical value, z critical = Norm.S .INV (0.05/2) = 1.960
Reject H o if z < -1.96 or if z > 1.96
d) Decision:
z = 2.1784 > 1.96,
Reject the null hypothesis
Answer:
μ = 1 The firm expects that one oil exploration will be successful.
v(x)= 0.9
Step-by-step explanation:
The first step is to define the random variable x as:
x: number of oil explorations being succesful
Then x can be take this values:
x = 0 , x =1 ... x =10
x is a binomially distributed random variable with parameters.
p = 0.1 and n=10
And the mean or the expected value of x is:
μ = E(x) = np
Then μ = 10*0.1 = 1
And the variance of x is:
V(x) = np(1-p)
V(x) = 10(0.1)(1-0.1)= 0.9
Answer:
C) 1
there is only one space between L and D
Answer:
a) 0.06 = 6% probability that a person has both type O blood and the Rh- factor.
b) 0.94 = 94% probability that a person does NOT have both type O blood and the Rh- factor.
Step-by-step explanation:
I am going to solve this question treating these events as Venn probabilities.
I am going to say that:
Event A: Person has type A blood.
Event B: Person has Rh- factor.
43% of people have type O blood
This means that 
15% of people have Rh- factor
This means that 
52% of people have type O or Rh- factor.
This means that 
a. Find the probability that a person has both type O blood and the Rh- factor.
This is

With what we have

0.06 = 6% probability that a person has both type O blood and the Rh- factor.
b. Find the probability that a person does NOT have both type O blood and the Rh- factor.
1 - 0.06 = 0.94
0.94 = 94% probability that a person does NOT have both type O blood and the Rh- factor.
I believe that it's (1,3)
(tip: with these problems, try to use desmos.com)