Answer:
The 98% confidence interval for the mean amount spent on their child's last birthday gift is between $40.98 and $43.02.
Step-by-step explanation:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom, we have. This is the sample size subtracted by 1. So
df = 24 - 1 = 23
98% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 23 degrees of freedom(y-axis) and a confidence level of
. So we have T = 2.5
The margin of error is:

In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 42 - 1.02 = $40.98.
The upper end of the interval is the sample mean added to M. So it is 42 + 1.02 = $43.02.
The 98% confidence interval for the mean amount spent on their child's last birthday gift is between $40.98 and $43.02.
The graph located in the upper right corner of the image attached shows the graph of y = 3[x]+1.
In order to solve this problem we have to evaluate the function y = 3[x] + 1 with a group of values.
With x = { -3, -2, -1, 0, 1, 2, 3}:
x = -3
y = 3[-3] + 1 = -9 + 1
y = -8
x = -2
y = 3[-2] + 1 = -6 + 1
y = -5
x = -1
y = 3[-1] + 1 = -3 + 1
y = -2
x = 0
y = 3[0] + 1 = 0 + 1
y = 1
x = 1
y = 3[1] + 1 = 3 + 1
y = 4
x = 2
y = 3[2] + 1 = 6 + 1
y = 7
x = 3
y = 3[3] + 1 = 9 + 1
y = 10
x y
-3 -8
-2 -5
-1 -2
0 1
1 4
2 7
3 10
The graph that shows the function y = 3[x] + 1 is the one located in the upper right corner of the image attached.
Answer:
5 terms
Step-by-step explanation:
x is one term
-3 is one term
2y is one term
-16 is one term
4x is one term
5 terms in total
Answer: your answer is 36.3 cause it's half of 72.6.
Step-by-step explanation:
Answer:
7.24632
Step-by-step explanation: