Popcorn would be 7.98. Drinks would be 5.25. Togather they would be 13.23.
Answer: (x=+17)
Step-by-step explanation:
x+35=3x+1
We move all terms to the left:
x+35-(3x+1)=0
We get rid of parentheses
x-3x-1+35=0
We add all the numbers together, and all the variables
-2x+34=0
We move all terms containing x to the left, all other terms to the right
-2x=-34
x=-34/-2
x=+17
Answer:
Al final, Eduardo tenía 20 dulces.
Step-by-step explanation:
Dado que al principio Eduardo y Adrián tenían el mismo número de dulces, y Eduardo le dio a Adrián la mitad de los dulces que tenía, y después, Adrián le dio a Eduardo la mitad de los dulces que tenía él en ese momento, así que a Adrián le quedaron 12 dulces, para determinar cuántos dulces tenía Eduardo al final se debe realizar el siguiente cálculo:
Eduardo 1X = Adrián 1X
Eduardo 0.5X = Adrián 1.5X
Eduardo 1.25X = Adrián 0.75X
0.75 X = 12
X = 12 / 0.75
X = 16
1.25 X = 16 x 1.25 = 20
Así, al final, Eduardo tenía 20 dulces.
Answer:
the picture is blurry
Step-by-step explanation:
<h2>can. you give me another picture? plz</h2>
Answer:
The correct option is;
c. Because the p-value of 0.1609 is greater than the significance level of 0.05, we fail to reject the null hypothesis. We conclude the data provide convincing evidence that the mean amount of juice in all the bottles filled that day does not differ from the target value of 275 milliliters.
Step-by-step explanation:
Here we have the values
μ = 275 mL
275.4
276.8
273.9
275
275.8
275.9
276.1
Sum = 1928.9
Mean (Average), = 275.5571429
Standard deviation, s = 0.921696159
We put the null hypothesis as H₀: μ₁ = μ₂
Therefore, the alternative becomes Hₐ: μ₁ ≠ μ₂
The t-test formula is as follows;

Plugging in the values, we have,
Test statistic = 1.599292
at 7 - 1 degrees of freedom and α = 0.05 = ±2.446912
Our p-value from the the test statistic = 0.1608723≈ 0.1609
Therefore since the p-value = 0.1609 > α = 0.05, we fail to reject our null hypothesis, hence the evidence suggests that the mean does not differ from 275 mL.