1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexgriva [62]
3 years ago
6

-6x + 8x = -46 A) -23 B) 3.2 C) 12 D) 16

Mathematics
2 answers:
Assoli18 [71]3 years ago
7 0

<em><u>So</u></em><em><u> </u></em><em><u>th</u></em><em><u>e</u></em><em><u> </u></em><em><u>right</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>-</u></em><em><u>2</u></em><em><u>3</u></em><em><u>.</u></em>

<h2><em><u>Hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>u</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em></h2>

Nana76 [90]3 years ago
4 0

Answer:

A

x = -23

Step-by-step explanation:

to solve this kind of equation , you need to just follow the simple procedure

first consider the positive and negative signs and the next step is to collect the like terms then you divide by the coefficient of x

<u>solution</u>

<u>-6x + 8x = -46</u>

2x = -46

divide both sides by the coefficient of x which is 2

2x/2 = -46/2

x = -23

You might be interested in
1. What is the difference between a median of a triangle and an altitude?
Step2247 [10]

Answer:

The difference between a median and altitude of a triangle is given below :

Altitude is the perpendicular line drawn from a vertex of a triangle to its opposite side .But a median of a triangle is a segment connecting a vertex to the midpoint of its opposite side.

Step-by-step explanation:

The difference between a median and altitude of a triangle is given below :

Altitude is the perpendicular line drawn from a vertex of a triangle to its opposite side .But a median of a triangle is a segment connecting a vertex to the midpoint of its opposite side.

4 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
What is the value of p so that the expession 6x+3-(8x-5) is equivalent to (px+8)?​
kiruha [24]

Answer:

-2

Step-by-step explanation:

The first equation simplifies to -2x+8 so p should be replaced with -2

4 0
3 years ago
One column of number consist of 61
iVinArrow [24]
6100 is the one column
6 0
3 years ago
Mrs Lee used 6 Meters of material to make 3 dresses. She used 4 ties as much material for a curtain as for a dress. How much mat
bulgar [2K]

Answer:

for each dress she used 6/3 of material

=2

then for a curtain =2x4=8 materials

3 0
3 years ago
Other questions:
  • The quotient of P and 18 is equal to the sum of p<br> and 17.<br><br><br><br> Write The expression:
    11·1 answer
  • Solve the equation.<br> 8m + 2 + 4m<br> 2 (6m + 1)<br> 0=0 many solution
    12·1 answer
  • Eight times the sum of a number and 2 equals 4
    10·2 answers
  • (Sec. 2.3) A restaurant having a grand opening is allowing visitors to try 6 different free samples from a selection. Options fo
    13·1 answer
  • Photo attached!!!!!!!
    15·1 answer
  • How many 50 cents coins are there in $10:50​
    6·1 answer
  • 13. Find the length of X (in the picture)​
    15·2 answers
  • Y = 2/3x - 2<br> y = -x + 3<br> Please and quickly
    13·1 answer
  • Bob worked for four hours at the sporting good store and earned $8.25 per hour then he shoveled snow for two hours and earned $1
    15·1 answer
  • A group of friends chartered a deep-sea fishing boat out of destin, fl. the graph below represents the total cost, in dollars, o
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!