so hmmm let's get the area of the whole hexagon, and then get the area of the circle inside it, then <u>subtract the area of the circle from that of the hexagon's</u>, what's leftover is what we didn't subtract, namely the shaded part.
![\textit{area of a regular polygon}\\\\ A=\cfrac{1}{4}ns^2\cot\stackrel{\stackrel{degrees}{\downarrow }}{\left( \frac{180}{n} \right)}~ \begin{cases} n=\textit{number of sides}\\ s=\textit{length of a side}\\[-0.5em] \hrulefill\\ n=\stackrel{hexagon}{6}\\ s=\frac{9}{2} \end{cases}\implies A=\cfrac{1}{4}(6)\left( \cfrac{9}{2} \right)^2 \cot\left( \cfrac{180}{6} \right)](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20regular%20polygon%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B4%7Dns%5E2%5Ccot%5Cstackrel%7B%5Cstackrel%7Bdegrees%7D%7B%5Cdownarrow%20%7D%7D%7B%5Cleft%28%20%5Cfrac%7B180%7D%7Bn%7D%20%5Cright%29%7D~%20%5Cbegin%7Bcases%7D%20n%3D%5Ctextit%7Bnumber%20of%20sides%7D%5C%5C%20s%3D%5Ctextit%7Blength%20of%20a%20side%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20n%3D%5Cstackrel%7Bhexagon%7D%7B6%7D%5C%5C%20s%3D%5Cfrac%7B9%7D%7B2%7D%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B4%7D%286%29%5Cleft%28%20%5Ccfrac%7B9%7D%7B2%7D%20%5Cright%29%5E2%20%5Ccot%5Cleft%28%20%5Ccfrac%7B180%7D%7B6%7D%20%5Cright%29)
![A=\cfrac{1}{4}(6)\cfrac{9^2}{2^2} \cot(30^o)\implies A=\cfrac{243}{8}\cot(30^o)\implies A=\cfrac{243\sqrt{3}}{8} \\\\[-0.35em] ~\dotfill\\\\ \textit{area of circle}\\\\ A=\pi r^2~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=\frac{4}{5} \end{cases}\implies A=\pi \left( \cfrac{4}{5} \right)^2\implies A=\cfrac{16\pi }{25} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=A%3D%5Ccfrac%7B1%7D%7B4%7D%286%29%5Ccfrac%7B9%5E2%7D%7B2%5E2%7D%20%5Ccot%2830%5Eo%29%5Cimplies%20A%3D%5Ccfrac%7B243%7D%7B8%7D%5Ccot%2830%5Eo%29%5Cimplies%20A%3D%5Ccfrac%7B243%5Csqrt%7B3%7D%7D%7B8%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ctextit%7Barea%20of%20circle%7D%5C%5C%5C%5C%20A%3D%5Cpi%20r%5E2~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D%5Cfrac%7B4%7D%7B5%7D%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Cpi%20%5Cleft%28%20%5Ccfrac%7B4%7D%7B5%7D%20%5Cright%29%5E2%5Cimplies%20A%3D%5Ccfrac%7B16%5Cpi%20%7D%7B25%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

Answer:
Step-by-step explanation:
A = C^2 / 4 x pi
so if the circumfernce was 10 you would square it to make it 100 and then you would do 4 x pi to get 12.57 ( rounded).
you would then just divide 100 by 12.57 = 7.96 ( rounded)
hope it helped
me neither but this is what i got
3n² p⁴
<h3>
Answer: n+15</h3>
=======================================================
Explanation:
- n = number of minutes
- cost of company X = 3n+30
- cost of company Y = 2n+15
To find out how much more company X charges, we subtract the two cost expressions
CompanyX - CompanyY = (3n+30)-(2n+15) = 3n+30-2n-15 = n+15 which is the final answer.
--------------
An example:
Let's say you talk on the phone for n = 20 minutes.
Company X would charge you 3n+30 = 3*20+30 = 90 cents
Company Y would charge you 2n+15 = 2*20+15 = 55 cents
The difference of which is 90-55 = 35 cents.
If you plugged n = 20 into the n+15 expression we got, then n+15 = 20+15 = 35 matches up with the previous 35 cents.
This example helps confirm the answer. I'll let you try out other examples.