Answer:
The value of
:

Step-by-step explanation:
Find the value of
:

-Add both sides by
:


-Subtract both sides by
:


Divide both sides by
:


So, the final answer would be
.
Answer:
When solving for x, answer =
When solving for a, answer = 
Step-by-step explanation:
24 + 5x = -x + 6(5a - 4)
Start by multiplying 6 by the values in the parenthesis
24 + 5x = -x + 30a - 24
Add 24 to both sides of the equation
48 + 5x = -x + 30a
Add 1x to both sides of the equation
48 + 6x = 30a
Subtract 48 from both sides of the equation
6x = 30a - 48
Divide both sides of the equation by 6
x = 5a - 8 (Answer when solving for x)
Add 8 to both sides of the equation
x + 8 = 5a
Divide both sides of the equation by 5
a = 1/5x + 8/5 (Answer when solving for a)
-----------------------------------------
When solving for x, answer =
When solving for a, answer = 
Hope this helps :)
Answer:
104.8 in^2
Step-by-step explanation:
There are 2 ways to solve this problem.
The 1st way:
Let's make 2 triangles and 1 rectangle:
Rectangle Length = 8.3
Rectangle Width = 8
So, the left out length will be 17.9 - 8.3
=> 9.6
Since, 9.6 cm is for 2 parts.
=> 9.6 / 2
=> 4.8
So, Height of the Triangle = 8
Base of the triangle = 4.8
Area of a rectangle
=> 8.3 x 8
=> 66.4
Area of the triangle
=> 1/2 x 8 x 4.8
=> 4 x 4.8
=> 19.2
There are 2 triangles:
=> 19.2 x 2
=> 38.4
=> 66.4 + 38.4
=> 104.8
The area of the trapezoid = 104.8 in^2.
The 2nd way is:
Area of a trapezoid
=> Smaller Base + Larger Base / 2 x Height
=> 8.3 + 17.9 / 2 x 8
=> 26.2 / 2 x 8
=> 13.1 x 8
=> 104.8
The area of the trapezoid is 104.8 in^2
Answer:
<h2>BR ≈ 49.0</h2>
Step-by-step explanation:
Use cosine:

We have


Substitute:

<em>cross multiply</em>
<em>divide both sides by 8,572</em>

