Answer: P(22 ≤ x ≤ 29) = 0.703
Step-by-step explanation:
Since the machine's output is normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - µ)/σ
Where
x = output of the machine in ounces per cup.
µ = mean output
σ = standard deviation
From the information given,
µ = 27
σ = 3
The probability of filling a cup between 22 and 29 ounces is expressed as
P(22 ≤ x ≤ 29)
For x = 22,
z = (22 - 27)/3 = - 1.67
Looking at the normal distribution table, the probability corresponding to the z score is 0.047
For x = 29,
z = (29 - 27)/3 = 0.67
Looking at the normal distribution table, the probability corresponding to the z score is 0.75
Therefore,
P(22 ≤ x ≤ 29) = 0.75 - 0.047 = 0.703
Answer:
296 x 6 = 1776
Step-by-step explanation:
Answer:
si quieres la respuesta pon más puntos
The first integer (x) is equal to the consecutive even integers, x+2, x+4.
x = (x+2) + (x+4)
x = 2x + 6
x - 6 = 2x
x = -6 (First integer)
+2
-4 (Second integer)
+4
-2 (Third integer)
Integers: -6, -4, -2
Equation: x = (x+2) + (x+4)
Question
x+5/x+2 - x+1/x²+2x
Answer:
= (x² - 4x - 1)/[x (x+2)]
= (x² - 4x - 1)/[x² + 2x]
Step-by-step explanation:
x + 5/x + 2 - x + 1/x² + 2x
We factorise the second denominator to give us :
x + 5/x + 2 - x + 1/x(x + 2)
We find the L.C.M of both denominators which is x(x+2).
[x(x + 5)-(x + 1)] / (x (x + 2))
Expand the bracket
=[x² +5x - x -1] / [x (x + 2)]
=(x² - 4x - 1) / [x (x + 2)]
= (x² - 4x - 1)/ [x (x + 2)]
= (x² - 4x - 1) / [x² + 2x]