The initial statement is:    QS = SU   (1)
                                     QR = TU    (2)
  
We have to probe that:  RS = ST
  
  
Take the expression (1):                     QS       =   SU
We multiply both sides by R                (QS)R   =   (SU)R
  
  
But    (QS)R = S(QR)     Then:            S(QR)   =   (SU)R     (3)
  
From the expression (2):  QR = TU. Then, substituting it in to expression (3):
  
                                                        S(TU)   =   (SU)R     (4)
  
But  S(TU) = (ST)U  and (SU)R = (RS)U
  
Then, the expression (4) can be re-written as:
  
                                                       (ST)U    =    (RS)U
  
Eliminating U from both sides you have:     (ST) = (RS)    The proof is done.