Deci- means 1/10 or .1 of a unit.
VW=CD since they are congruent figure, so CD=6
First we'll do two basic steps. Step 1 is to subtract 18 from both sides. After that, divide both sides by 2 to get x^2 all by itself. Let's do those two steps now
2x^2+18 = 10
2x^2+18-18 = 10-18 <<--- step 1
2x^2 = -8
(2x^2)/2 = -8/2 <<--- step 2
x^2 = -4
At this point, it should be fairly clear there are no solutions. How can we tell? By remembering that x^2 is never negative as long as x is real.
Using the rule that negative times negative is a positive value, it is impossible to square a real numbered value and get a negative result.
For example
2^2 = 2*2 = 4
8^2 = 8*8 = 64
(-10)^2 = (-10)*(-10) = 100
(-14)^2 = (-14)*(-14) = 196
No matter what value we pick, the result is positive. The only exception is that 0^2 = 0 is neither positive nor negative.
So x^2 = -4 has no real solutions. Taking the square root of both sides leads to
x^2 = -4
sqrt(x^2) = sqrt(-4)
|x| = sqrt(4)*sqrt(-1)
|x| = 2*i
x = 2i or x = -2i
which are complex non-real values
A vertical stretching is the stretching of the graph away from the x-axis.
A vertical compression is the squeezing of the graph towards the x-axis.
A compression is a stretch by a factor less than 1.
For the parent function y = f(x), the vertical stretching or compression of the function is a f(x).
If | a | < 1 (a fraction between 0 and 1), then the graph is compressed vertically by a factor of a units.
If | a | > 1, then the graph is stretched vertically by a factor of a units.
For values of a that are negative, then the vertical compression or vertical stretching of the graph is followed by a reflection across the x-axis.
Thus, the equation with the widest graph is 0.3x^2.