1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WARRIOR [948]
3 years ago
10

Zero, a hypothetical planet, has a mass of 5.3 x 1023 kg, a radius of 3.3 x 106 m, and no atmosphere. A 10 kg space probe is to

be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of 5.0 x 107 J, what will be its kinetic energy when it is 4.0 x 106 m from the center of Zero? (b) If the probe is to achieve a maximum distance of 8.0 x 106 m from the center of Zero, with what initial kinetic energy must it be launched from the surface of Zero?
Physics
1 answer:
Goryan [66]3 years ago
4 0

(a) 3.1\cdot 10^7 J

The total mechanical energy of the space probe must be constant, so we can write:

E_i = E_f\\K_i + U_i = K_f + U_f (1)

where

K_i is the kinetic energy at the surface, when the probe is launched

U_i is the gravitational potential energy at the surface

K_f is the final kinetic energy of the probe

U_i is the final gravitational potential energy

Here we have

K_i = 5.0 \cdot 10^7 J

at the surface, R=3.3\cdot 10^6 m (radius of the planet), M=5.3\cdot 10^{23}kg (mass of the planet) and m=10 kg (mass of the probe), so the initial gravitational potential energy is

U_i=-G\frac{mM}{R}=-(6.67\cdot 10^{-11})\frac{(10 kg)(5.3\cdot 10^{23}kg)}{3.3\cdot 10^6 m}=-1.07\cdot 10^8 J

At the final point, the distance of the probe from the centre of Zero is

r=4.0\cdot 10^6 m

so the final potential energy is

U_f=-G\frac{mM}{r}=-(6.67\cdot 10^{-11})\frac{(10 kg)(5.3\cdot 10^{23}kg)}{4.0\cdot 10^6 m}=-8.8\cdot 10^7 J

So now we can use eq.(1) to find the final kinetic energy:

K_f = K_i + U_i - U_f = 5.0\cdot 10^7 J+(-1.07\cdot 10^8 J)-(-8.8\cdot 10^7 J)=3.1\cdot 10^7 J

(b) 6.3\cdot 10^7 J

The probe reaches a maximum distance of

r=8.0\cdot 10^6 m

which means that at that point, the kinetic energy is zero: (the probe speed has become zero):

K_f = 0

At that point, the gravitational potential energy is

U_f=-G\frac{mM}{r}=-(6.67\cdot 10^{-11})\frac{(10 kg)(5.3\cdot 10^{23}kg)}{8.0\cdot 10^6 m}=-4.4\cdot 10^7 J

So now we can use eq.(1) to find the initial kinetic energy:

K_i = K_f + U_f - U_i = 0+(-4.4\cdot 10^7 J)-(-1.07\cdot 10^8 J)=6.3\cdot 10^7 J

You might be interested in
A record turntable is rotating at 33 1 3 rev/min. a watermelon seed is on the turntable 5.0 cm from the axis of rotation. (a) ca
LenaWriter [7]
Distance D = 5 cm = 0.05m 
Revolutions = 33.33 per min => t = 60 sec 
Acceleration is v^2 / r, so first we need to find velocity 
Velocity = (D x 3.14 x r) / t => (0.05 x 3.14 x 33.33) / 60 
Velocity = 0.0872 m/s 
Acceleration = v^2 / r = 0.0872^2 / 0.05 = 0.152.
4 0
3 years ago
Read 2 more answers
What does a halogen atom give off when it gains an electron?
spin [16.1K]
Probably gas because it will reach Nobel gas state
6 0
3 years ago
Read 2 more answers
Convert-73°c to kelvin scale​
pantera1 [17]

Answer:

200 K

Explanation:

0 °C = 273 K

-73°C = 273 K - 73 K = 200 K

5 0
3 years ago
Read 2 more answers
PLS HELP!!
stealth61 [152]

Answer:

B

Explanation:

The iris controls the amount of light that enters the eye by opening and closing the pupil. The iris uses muscles to change the size of the pupil. These muscles can control the amount of light entering the eye by making the pupil larger (dilated) or smaller (constricted).

8 0
3 years ago
Read 2 more answers
What is 1.0 x 10^9 in standard form?
jasenka [17]
1.0 x 10^9= 1000000000
3 0
4 years ago
Other questions:
  • A block of wood has a height of 10 m, a length of 2 m, and a width of 2 m. What is the volume of the block of wood?
    12·1 answer
  • 1.)Describe an experience where you encountered a buoyant force and tell what it felt like.
    11·1 answer
  • An object is placed 11.0 cm in front of a concave mirror whose focal length is 24.0 cm. The object is 2.60 cm tall. What is the
    10·1 answer
  • A 0.22 kg air track glider moving at 0.60 m/s a collides elastically into a 0.44 kg glider at rest. After collision the 0.22 kg
    14·1 answer
  • Maggie is a member of her school’s environmental club and is interested in recycling. She asks the question, “How does exposure
    13·1 answer
  • Which of the following areas of the sun is where energy is transferred very slowly, sometimes taking up to 100,000 years, by ele
    15·1 answer
  • What average net force is required to accelerate a 3950 kg bus to a speed of 25m/s in 10.5 s?
    11·1 answer
  • Right hand rule exercise
    9·1 answer
  • Essential Question: Where does energy come from and where does it go? How is energy transferred and converted?
    5·1 answer
  • Two charged particles are a distance of 1.82 m from each other. One of the particles has a charge of 7.03 nC, and the other has
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!