Answer:
a
Since the integral has an infinite discontinuity, it is a Type 2 improper integral
b
Since the integral has an infinite interval of integration, it is a Type 1 improper integral
c
Since the integral has an infinite interval of integration, it is a Type 1 improper integral
d
Since the integral has an infinite discontinuity, it is a Type 2 improper integral
Step-by-step explanation:
Considering a

Looking at this we that at x = 3 this integral will be infinitely discontinuous
Considering b

Looking at this integral we see that the interval is between
which means that the integral has an infinite interval of integration , hence it is a Type 1 improper integral
Considering c

Looking at this integral we see that the interval is between
which means that the integral has an infinite interval of integration , hence it is a Type 1 improper integral
Considering d

Looking at the integral we see that at x = 0 cot (0) will be infinity hence the integral has an infinite discontinuity , so it is a Type 2 improper integral
Answer:
<u><em>9 (3x+2)</em></u>
Step-by-step explanation:
<u>27x + 18 = 9 (3x+2)</u>
<em>By simplifying the Given expression you get 9 (3x+2) </em>
<em>and no matter how many times you simplify that expression you always get the expression you started with so in other word their equavalent to each other</em>
<em />
<u><em>Hope this helps</em></u>
Answer:
407.22 foot is the boat from the base of the lighthouse
Step-by-step explanation:
Given the statement: An observer on top of a 50-foot tall lighthouse sees a boat at a 7° angle of depression.
Let x foot be the distance of the object(boat) from the base of the lighthouse
Angle of depression = 
[Alternate angle]
In triangle CAB:
To find AB = x foot.
Using tangent ratio:


Here, BC = 50 foot and 
then;

or


Simplify:
AB = x = 407.217321 foot
Therefore, the boat from the base of the light house is, 407.22'
In a triangle, the nomenclature is that a variable side a is opposite of the angle A. we can use the cosine law to determine the value of cosine A.
a2 = b2 + c2 -2bc cos a25 = 36 + 64 - 2*6*8 * cos acos a = 25/32