Answer:
yniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh olleh
Step-by-step explanation:yniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era csacasccacwoh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh olleh
-44 because if u multiply -11 by 4 you get -44 and when divided by 4 you get -11
8 costs 40 so 10 costs | 40 / 8 = ( 5*2=10) So your answer is 50 Dollars.
The area of an equilateral triangle of side "s" is s^2*sqrt(3)/4. So the volume of the slices in your problem is
(x - x^2)^2 * sqrt(3)/4.
Integrating from x = 0 to x = 1, we have
[(1/3)x^3 - (1/2)x^4 + (1/5)x^5]*sqrt(3)/4
= (1/30)*sqrt(3)/4 = sqrt(3)/120 = about 0.0144.
Since this seems quite small, it makes sense to ask what the base area might be...integral from 0 to 1 of (x - x^2) dx = (1/2) - (1/3) = 1/6. Yes, OK, the max height of the triangles occurs where x - x^2 = 1/4, and most of the triangles are quite a bit shorter...
Answer:
message it will be easy er to explain
Step-by-step explanation: