the answer is it is proportional
Find the intercepts for both planes.
Plane 1, <em>x</em> + <em>y</em> + 2<em>z</em> = 2:



Plane 2, 4<em>x</em> + 4<em>y</em> + <em>z</em> = 8:



Both planes share the same <em>x</em>- and <em>y</em>-intercepts, but the second plane's <em>z</em>-intercept is higher, so Plane 2 acts as the roof of the bounded region.
Meanwhile, in the (<em>x</em>, <em>y</em>)-plane where <em>z</em> = 0, we see the bounded region projects down to the triangle in the first quadrant with legs <em>x</em> = 0, <em>y</em> = 0, and <em>x</em> + <em>y</em> = 2, or <em>y</em> = 2 - <em>x</em>.
So the volume of the region is



Given, a parking lot charges $3 for first hour and $2 per hour after that.
So for t hours, the parking lot charges $3 for the first hour and after first hour there is
hours left.
So for
hours it will charge $2 per hour.
The charges for
hours = $
.
Total charges for t hours for one car = $
Now for the second car, it will charge 75% of the first car.
So the charges for second car
=$[
]
=$
There are 3 cars. That parking charges for the third car is also 75% of the first car.
So for third car the parking charges are same as for the second car.
Total parking charges for 3 cars
= $
= $
We have got the required answer here.
The correct option is option C.
Answer:
General Solution is
and the particular solution is 
Step-by-step explanation:

This is a linear diffrential equation of type
..................(i)
here 

The solution of equation i is given by

we have ![e^{\int p(x)dx}=e^{\int \frac{-2}{x}dx}\\\\e^{\int \frac{-2}{x}dx}=e^{-2ln(x)}\\\\=e^{ln(x^{-2})}\\\\=\frac{1}{x^{2} } \\\\\because e^{ln(f(x))}=f(x)]\\\\Thus\\\\e^{\int p(x)dx}=\frac{1}{x^{2}}](https://tex.z-dn.net/?f=e%5E%7B%5Cint%20p%28x%29dx%7D%3De%5E%7B%5Cint%20%5Cfrac%7B-2%7D%7Bx%7Ddx%7D%5C%5C%5C%5Ce%5E%7B%5Cint%20%5Cfrac%7B-2%7D%7Bx%7Ddx%7D%3De%5E%7B-2ln%28x%29%7D%5C%5C%5C%5C%3De%5E%7Bln%28x%5E%7B-2%7D%29%7D%5C%5C%5C%5C%3D%5Cfrac%7B1%7D%7Bx%5E%7B2%7D%20%7D%20%5C%5C%5C%5C%5Cbecause%20e%5E%7Bln%28f%28x%29%29%7D%3Df%28x%29%5D%5C%5C%5C%5CThus%5C%5C%5C%5Ce%5E%7B%5Cint%20p%28x%29dx%7D%3D%5Cfrac%7B1%7D%7Bx%5E%7B2%7D%7D)
Thus the solution becomes


This is the general solution now to find the particular solution we put value of x=2 for which y=6
we have 
Thus solving for c we get c = -1/2
Thus particular solution becomes

Yeah uh show us a photo of the equation