1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vikki [24]
3 years ago
13

Hello! I need to verify this identity. Can you explain with all the steps? Thanks.

Mathematics
1 answer:
MatroZZZ [7]3 years ago
7 0

Answer:

Both sides =  \frac{(sin\alpha+cos\alpha)}{(cos\alpha-sin\alpha)}

Step-by-step explanation:

Let us revise some identity

sin(∝ + a) = sin(∝) cos(a) + cos(∝) sin(a)

cos(∝ + a) = cos(∝) cos(a) - sin(∝) sin(a)

tan ∝ = \frac{sin(\alpha)}{cos(\alpha)}

Let us simplify each side

Left hand side

∵ tan(\alpha+\frac{\pi }{4})=\frac{sin(\alpha+\frac{\pi }{4})}{cos(\alpha+\frac{\pi}{4})}  ⇒ (1)

∵ sin(\alpha+\frac{\pi}{4})=sin(\alpha )cos(\frac{\pi}{4})+cos(\alpha)sin(\frac{\pi}{4}) ⇒ (2)

∵ sin(\frac{\pi}{4})=\frac{\sqrt{2}}{2} and  cos(\frac{\pi}{4})=\frac{\sqrt{2}}{2}

- Substitute them in (2)

∴ sin(\alpha+\frac{\pi}{4})=sin(\alpha )(\frac{\sqrt{2}}{2})+cos(\alpha)(\frac{\sqrt{2} }{2})

∴ sin(\alpha+\frac{\pi}{4})=(\frac{\sqrt{2}}{2})sin\alpha +(\frac{\sqrt{2} }{2})cos\alpha

- Take \frac{\sqrt{2}}{2} as a common factor

∴ sin(\alpha+\frac{\pi}{4})=(\frac{\sqrt{2}}{2})(sin\alpha +cos\alpha) ⇒ (3)

∵ cos(\alpha+\frac{\pi}{4})=cos(\alpha )cos(\frac{\pi}{4})-sin(\alpha)sin(\frac{\pi}{4}) ⇒ (4)

∵ cos(\frac{\pi}{4})=\frac{\sqrt{2}}{2} and  sin(\frac{\pi}{4})=\frac{\sqrt{2}}{2}

- Substitute them in (4)

∴ cos(\alpha+\frac{\pi}{4})=cos(\alpha )(\frac{\sqrt{2}}{2})-sin(\alpha)(\frac{\sqrt{2}}{2})

∴ cos(\alpha+\frac{\pi}{4})=(\frac{\sqrt{2}}{2})cos\alpha-(\frac{\sqrt{2} }{2})sin\alpha

- Take \frac{\sqrt{2}}{2} as a common factor

∴ cos(\alpha+\frac{\pi}{4})=(\frac{\sqrt{2}}{2})(cos\alpha-sin\alpha) ⇒ (5)

Substitute (3) and (5) in (1)

∴  tan(\alpha+\frac{\pi }{4})=\frac{\frac{\sqrt{2}}{2}(sin\alpha+cos\alpha)}{\frac{\sqrt{2}}{2}(cos\alpha-sin\alpha)}

- Simplify it by divide up and down by \frac{\sqrt{2}}{2}

∴ tan(\alpha+\frac{\pi }{4})=\frac{(sin\alpha+cos\alpha)}{(cos\alpha-sin\alpha)}

∴ Left hand side = \frac{(sin\alpha+cos\alpha)}{(cos\alpha-sin\alpha)}

Right hand side

Right hand side =  \frac{cos(\alpha-\frac{5}{4}\pi )}{cos(\frac{3}{4}\pi-\alpha)}  ⇒ (1)

∵ cos(\alpha-\frac{5}{4}\pi)=cos(\alpha )cos(\frac{5}{4}\pi )+sin(\alpha)sin(\frac{5}{4}\pi) ⇒ (2)

∵ cos(\frac{5}{4}\pi )=-\frac{\sqrt{2}}{2} and  sin(\frac{5}{4}\pi)=-\frac{\sqrt{2}}{2}

- Substitute them in (2)

∴ cos(\alpha-\frac{5}{4}\pi)=cos(\alpha )(-\frac{\sqrt{2}}{2})+sin(\alpha)(-\frac{\sqrt{2}}{2})

∴ cos(\alpha-\frac{5}{4}\pi )=(-\frac{\sqrt{2}}{2})cos\alpha+(-\frac{\sqrt{2} }{2})sin\alpha

- Take -\frac{\sqrt{2}}{2} as a common factor

∴ cos(\alpha-\frac{5}{4}\pi)=(-\frac{\sqrt{2}}{2})(cos\alpha+sin\alpha) ⇒ (3)

∵ cos(\frac{3}{4}\pi-\alpha)=cos(\frac{3}{4}\pi)cos(\alpha)+sin(\frac{3}{4}\pi)sin(\alpha) ⇒ (4)

∵ cos(\frac{3}{4}\pi )=-\frac{\sqrt{2}}{2} and  sin(\frac{3}{4}\pi)=\frac{\sqrt{2}}{2}

- Substitute them in (4)

∴ cos(\frac{3}{4}\pi-\alpha)=(-\frac{\sqrt{2}}{2})cos(\alpha)+(\frac{\sqrt{2}}{2})sin(\alpha)

- Take -\frac{\sqrt{2}}{2} as a common factor

∴ cos(\frac{3}{4}\pi-\alpha)=(-\frac{\sqrt{2}}{2})(cos\alpha-sin\alpha) ⇒ (5)

Substitute (3) and (5) in (1)

∴  \frac{cos(\alpha-\frac{5}{4}\pi )}{cos(\frac{3}{4}\pi-\alpha)}   =  \frac{-\frac{\sqrt{2}}{2}(cos\alpha+sin\alpha)}{-\frac{\sqrt{2}}{2}(cos\alpha-sin\alpha)}

- Simplify it by divide up and down by -\frac{\sqrt{2}}{2}

∴  \frac{cos(\alpha-\frac{5}{4}\pi )}{cos(\frac{3}{4}\pi-\alpha)}   =  \frac{(cos\alpha+sin\alpha)}{(cos\alpha-sin\alpha)}

∴ Right hand side = \frac{(cos\alpha+sin\alpha)}{(cos\alpha-sin\alpha)}

∵ cos∝ + sin∝ = sin∝ + cos∝

∴ Left hand side = Right hand side

∴ The identity is verified

You might be interested in
April is 19, Bryan is 20, Carla is 20, and Dave is 21, how old is Erica is the average of their given ages is 23?
alex41 [277]

Answer: 35

Step-by-step explanation:

     The average can be found by adding their ages together and dividing by the number of ages.

     Given:

\frac{19+20+20+21+x}{5} = 23

     Multiply both sides of the equation by 5:

19 + 20 + 20 + 21 + x = 115

     Combine like terms:

80 + x = 115

     Subtract 80 from both sides of the equation:

x = 35

                    Erica is 35.

8 0
2 years ago
73,404+27,865 what does it equal
leonid [27]
It is 101,269 that is the answer for your quistion
7 0
3 years ago
Copy link<br> OPEN ENDED QUESTION<br> What operation(s) should come first when<br> solving?
Marina86 [1]

Answer:

Multiplication and Division unless there are parentheses

Step-by-step explanation:

4 0
3 years ago
A
PtichkaEL [24]

Answer:

this confusing

Step-by-step explanation:

7 0
3 years ago
I need help with solving it
slega [8]
Sorry I can't lol but hope someone else can
7 0
3 years ago
Read 2 more answers
Other questions:
  • #5: This graph shows the amount of gas, in ounces, in a lawn mower gas tank, modeled as a function of time. Determine whether ea
    15·2 answers
  • Suppose Jose buys 4 pounds of sausage that cost $8.79 per pound, a bottle of mustard that costs $1.38, and two loaves of Cuban b
    6·2 answers
  • Calculate the sum 24+(-9)
    8·2 answers
  • Jessica used Fraction 2 over 3 yards of fabric to make a scarf. Can she make 2 of these scarves with Fraction 1 and 3 over 4 yar
    13·1 answer
  • Joshua took a math contest with 25 questions. Each correct answer earned 6 points while each incorrect answer deducted 4 points.
    11·2 answers
  • X^2+2x-8=0 complete the square
    6·2 answers
  • On the first january 2014 carol invested some money in a bank account the account payes 2.5% compound interest per year on 1st j
    14·1 answer
  • If the point M(2,2) is reflected over the y axis, what will be the coordinates of the resulting point, M’?
    11·1 answer
  • Please help me solve this answer.
    5·1 answer
  • HELP PLEASE WILL GIVE BRAINLIST
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!