1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vikki [24]
3 years ago
13

Hello! I need to verify this identity. Can you explain with all the steps? Thanks.

Mathematics
1 answer:
MatroZZZ [7]3 years ago
7 0

Answer:

Both sides =  \frac{(sin\alpha+cos\alpha)}{(cos\alpha-sin\alpha)}

Step-by-step explanation:

Let us revise some identity

sin(∝ + a) = sin(∝) cos(a) + cos(∝) sin(a)

cos(∝ + a) = cos(∝) cos(a) - sin(∝) sin(a)

tan ∝ = \frac{sin(\alpha)}{cos(\alpha)}

Let us simplify each side

Left hand side

∵ tan(\alpha+\frac{\pi }{4})=\frac{sin(\alpha+\frac{\pi }{4})}{cos(\alpha+\frac{\pi}{4})}  ⇒ (1)

∵ sin(\alpha+\frac{\pi}{4})=sin(\alpha )cos(\frac{\pi}{4})+cos(\alpha)sin(\frac{\pi}{4}) ⇒ (2)

∵ sin(\frac{\pi}{4})=\frac{\sqrt{2}}{2} and  cos(\frac{\pi}{4})=\frac{\sqrt{2}}{2}

- Substitute them in (2)

∴ sin(\alpha+\frac{\pi}{4})=sin(\alpha )(\frac{\sqrt{2}}{2})+cos(\alpha)(\frac{\sqrt{2} }{2})

∴ sin(\alpha+\frac{\pi}{4})=(\frac{\sqrt{2}}{2})sin\alpha +(\frac{\sqrt{2} }{2})cos\alpha

- Take \frac{\sqrt{2}}{2} as a common factor

∴ sin(\alpha+\frac{\pi}{4})=(\frac{\sqrt{2}}{2})(sin\alpha +cos\alpha) ⇒ (3)

∵ cos(\alpha+\frac{\pi}{4})=cos(\alpha )cos(\frac{\pi}{4})-sin(\alpha)sin(\frac{\pi}{4}) ⇒ (4)

∵ cos(\frac{\pi}{4})=\frac{\sqrt{2}}{2} and  sin(\frac{\pi}{4})=\frac{\sqrt{2}}{2}

- Substitute them in (4)

∴ cos(\alpha+\frac{\pi}{4})=cos(\alpha )(\frac{\sqrt{2}}{2})-sin(\alpha)(\frac{\sqrt{2}}{2})

∴ cos(\alpha+\frac{\pi}{4})=(\frac{\sqrt{2}}{2})cos\alpha-(\frac{\sqrt{2} }{2})sin\alpha

- Take \frac{\sqrt{2}}{2} as a common factor

∴ cos(\alpha+\frac{\pi}{4})=(\frac{\sqrt{2}}{2})(cos\alpha-sin\alpha) ⇒ (5)

Substitute (3) and (5) in (1)

∴  tan(\alpha+\frac{\pi }{4})=\frac{\frac{\sqrt{2}}{2}(sin\alpha+cos\alpha)}{\frac{\sqrt{2}}{2}(cos\alpha-sin\alpha)}

- Simplify it by divide up and down by \frac{\sqrt{2}}{2}

∴ tan(\alpha+\frac{\pi }{4})=\frac{(sin\alpha+cos\alpha)}{(cos\alpha-sin\alpha)}

∴ Left hand side = \frac{(sin\alpha+cos\alpha)}{(cos\alpha-sin\alpha)}

Right hand side

Right hand side =  \frac{cos(\alpha-\frac{5}{4}\pi )}{cos(\frac{3}{4}\pi-\alpha)}  ⇒ (1)

∵ cos(\alpha-\frac{5}{4}\pi)=cos(\alpha )cos(\frac{5}{4}\pi )+sin(\alpha)sin(\frac{5}{4}\pi) ⇒ (2)

∵ cos(\frac{5}{4}\pi )=-\frac{\sqrt{2}}{2} and  sin(\frac{5}{4}\pi)=-\frac{\sqrt{2}}{2}

- Substitute them in (2)

∴ cos(\alpha-\frac{5}{4}\pi)=cos(\alpha )(-\frac{\sqrt{2}}{2})+sin(\alpha)(-\frac{\sqrt{2}}{2})

∴ cos(\alpha-\frac{5}{4}\pi )=(-\frac{\sqrt{2}}{2})cos\alpha+(-\frac{\sqrt{2} }{2})sin\alpha

- Take -\frac{\sqrt{2}}{2} as a common factor

∴ cos(\alpha-\frac{5}{4}\pi)=(-\frac{\sqrt{2}}{2})(cos\alpha+sin\alpha) ⇒ (3)

∵ cos(\frac{3}{4}\pi-\alpha)=cos(\frac{3}{4}\pi)cos(\alpha)+sin(\frac{3}{4}\pi)sin(\alpha) ⇒ (4)

∵ cos(\frac{3}{4}\pi )=-\frac{\sqrt{2}}{2} and  sin(\frac{3}{4}\pi)=\frac{\sqrt{2}}{2}

- Substitute them in (4)

∴ cos(\frac{3}{4}\pi-\alpha)=(-\frac{\sqrt{2}}{2})cos(\alpha)+(\frac{\sqrt{2}}{2})sin(\alpha)

- Take -\frac{\sqrt{2}}{2} as a common factor

∴ cos(\frac{3}{4}\pi-\alpha)=(-\frac{\sqrt{2}}{2})(cos\alpha-sin\alpha) ⇒ (5)

Substitute (3) and (5) in (1)

∴  \frac{cos(\alpha-\frac{5}{4}\pi )}{cos(\frac{3}{4}\pi-\alpha)}   =  \frac{-\frac{\sqrt{2}}{2}(cos\alpha+sin\alpha)}{-\frac{\sqrt{2}}{2}(cos\alpha-sin\alpha)}

- Simplify it by divide up and down by -\frac{\sqrt{2}}{2}

∴  \frac{cos(\alpha-\frac{5}{4}\pi )}{cos(\frac{3}{4}\pi-\alpha)}   =  \frac{(cos\alpha+sin\alpha)}{(cos\alpha-sin\alpha)}

∴ Right hand side = \frac{(cos\alpha+sin\alpha)}{(cos\alpha-sin\alpha)}

∵ cos∝ + sin∝ = sin∝ + cos∝

∴ Left hand side = Right hand side

∴ The identity is verified

You might be interested in
The rate of a changing quantity is the amount it changes per single increment of time (or other quantity).
olganol [36]
That is correct. Is there a question regarding this?
7 0
3 years ago
Read 2 more answers
In the diagram below, every pair of segments which do not intersect are parallel, and the measure of angle k is 89 degrees. What
solong [7]
From the figure shown:
Given that k=89, then:
c=g=k=o=s=w=89
b=f=j=n=r=v=89
d=h=l=p=t=x=180-89=91
a=e=i=m=q=u=91
thus the sum of <span> s,e,q,u,o,i,a will be:
</span>s+e+q+u+o+i+a
=89+91+91+91+89+91+91
=633°

Answer: 633°
4 0
3 years ago
If b+3/7=2/5 then which of the following is true
spin [16.1K]
Let multiply by 35 both sides of the equation
35b+35*3/7=35*2/5
35b+15=14
There are all false

7 0
4 years ago
If c varies directly as the square root of d, and c=14, when d = 64, find c when d= 324
zubka84 [21]

Answer:

c = 31.5

Step-by-step explanation:

Given c varies directly as \sqrt{d} then the equation relating them is

c = k\sqrt{d} ← k is the constant of variation

To find k use the condition c = 14 when d = 64, then

14 = k ×\sqrt{64} = 8k ( divide both sides by 8 )

1.75 = k

c = 1.75\sqrt{d} ← equation of variation

When d = 324 , then

c = 1.75 × \sqrt{324} = 1.75 × 18 = 31.5

5 0
3 years ago
What percent of 6 is 5?
laiz [17]
100 percent / 6 =16.6 reoccurring times 5 = 83.3 reocurring
3 0
4 years ago
Read 2 more answers
Other questions:
  • Which number makes this equation true y^2+10v+16=(v+8)(v+?)
    13·1 answer
  • What is the common difference of an AP which has its first term as 100 and the sum of its first 6 terms = 5 times the sum of its
    8·1 answer
  • What is the percent decrease from 350 to 70?
    6·1 answer
  • A data set includes 103 body temperatures of healthy adult humans having a mean of 98.1 F and a standard deviation of 0.56 F. Co
    9·1 answer
  • 1 2/5 + 5 11/15 + 3 1/3 help pls
    10·1 answer
  • 5 = 2m − 5<br> How do you solve for M
    12·1 answer
  • Evaluate 32 + (6 - 2) · 4 -
    13·2 answers
  • I need help ASAP
    11·2 answers
  • HELP PLEASE ILL GIVE 10 POINTS
    7·1 answer
  • What is the equation of a line with a y-intercept at (0, 2) and a slope of 3? a. y = 2 x + 3 c. y = 3 x + 2 b. y = 3 x minus 2 d
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!