1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vikki [24]
3 years ago
13

Hello! I need to verify this identity. Can you explain with all the steps? Thanks.

Mathematics
1 answer:
MatroZZZ [7]3 years ago
7 0

Answer:

Both sides =  \frac{(sin\alpha+cos\alpha)}{(cos\alpha-sin\alpha)}

Step-by-step explanation:

Let us revise some identity

sin(∝ + a) = sin(∝) cos(a) + cos(∝) sin(a)

cos(∝ + a) = cos(∝) cos(a) - sin(∝) sin(a)

tan ∝ = \frac{sin(\alpha)}{cos(\alpha)}

Let us simplify each side

Left hand side

∵ tan(\alpha+\frac{\pi }{4})=\frac{sin(\alpha+\frac{\pi }{4})}{cos(\alpha+\frac{\pi}{4})}  ⇒ (1)

∵ sin(\alpha+\frac{\pi}{4})=sin(\alpha )cos(\frac{\pi}{4})+cos(\alpha)sin(\frac{\pi}{4}) ⇒ (2)

∵ sin(\frac{\pi}{4})=\frac{\sqrt{2}}{2} and  cos(\frac{\pi}{4})=\frac{\sqrt{2}}{2}

- Substitute them in (2)

∴ sin(\alpha+\frac{\pi}{4})=sin(\alpha )(\frac{\sqrt{2}}{2})+cos(\alpha)(\frac{\sqrt{2} }{2})

∴ sin(\alpha+\frac{\pi}{4})=(\frac{\sqrt{2}}{2})sin\alpha +(\frac{\sqrt{2} }{2})cos\alpha

- Take \frac{\sqrt{2}}{2} as a common factor

∴ sin(\alpha+\frac{\pi}{4})=(\frac{\sqrt{2}}{2})(sin\alpha +cos\alpha) ⇒ (3)

∵ cos(\alpha+\frac{\pi}{4})=cos(\alpha )cos(\frac{\pi}{4})-sin(\alpha)sin(\frac{\pi}{4}) ⇒ (4)

∵ cos(\frac{\pi}{4})=\frac{\sqrt{2}}{2} and  sin(\frac{\pi}{4})=\frac{\sqrt{2}}{2}

- Substitute them in (4)

∴ cos(\alpha+\frac{\pi}{4})=cos(\alpha )(\frac{\sqrt{2}}{2})-sin(\alpha)(\frac{\sqrt{2}}{2})

∴ cos(\alpha+\frac{\pi}{4})=(\frac{\sqrt{2}}{2})cos\alpha-(\frac{\sqrt{2} }{2})sin\alpha

- Take \frac{\sqrt{2}}{2} as a common factor

∴ cos(\alpha+\frac{\pi}{4})=(\frac{\sqrt{2}}{2})(cos\alpha-sin\alpha) ⇒ (5)

Substitute (3) and (5) in (1)

∴  tan(\alpha+\frac{\pi }{4})=\frac{\frac{\sqrt{2}}{2}(sin\alpha+cos\alpha)}{\frac{\sqrt{2}}{2}(cos\alpha-sin\alpha)}

- Simplify it by divide up and down by \frac{\sqrt{2}}{2}

∴ tan(\alpha+\frac{\pi }{4})=\frac{(sin\alpha+cos\alpha)}{(cos\alpha-sin\alpha)}

∴ Left hand side = \frac{(sin\alpha+cos\alpha)}{(cos\alpha-sin\alpha)}

Right hand side

Right hand side =  \frac{cos(\alpha-\frac{5}{4}\pi )}{cos(\frac{3}{4}\pi-\alpha)}  ⇒ (1)

∵ cos(\alpha-\frac{5}{4}\pi)=cos(\alpha )cos(\frac{5}{4}\pi )+sin(\alpha)sin(\frac{5}{4}\pi) ⇒ (2)

∵ cos(\frac{5}{4}\pi )=-\frac{\sqrt{2}}{2} and  sin(\frac{5}{4}\pi)=-\frac{\sqrt{2}}{2}

- Substitute them in (2)

∴ cos(\alpha-\frac{5}{4}\pi)=cos(\alpha )(-\frac{\sqrt{2}}{2})+sin(\alpha)(-\frac{\sqrt{2}}{2})

∴ cos(\alpha-\frac{5}{4}\pi )=(-\frac{\sqrt{2}}{2})cos\alpha+(-\frac{\sqrt{2} }{2})sin\alpha

- Take -\frac{\sqrt{2}}{2} as a common factor

∴ cos(\alpha-\frac{5}{4}\pi)=(-\frac{\sqrt{2}}{2})(cos\alpha+sin\alpha) ⇒ (3)

∵ cos(\frac{3}{4}\pi-\alpha)=cos(\frac{3}{4}\pi)cos(\alpha)+sin(\frac{3}{4}\pi)sin(\alpha) ⇒ (4)

∵ cos(\frac{3}{4}\pi )=-\frac{\sqrt{2}}{2} and  sin(\frac{3}{4}\pi)=\frac{\sqrt{2}}{2}

- Substitute them in (4)

∴ cos(\frac{3}{4}\pi-\alpha)=(-\frac{\sqrt{2}}{2})cos(\alpha)+(\frac{\sqrt{2}}{2})sin(\alpha)

- Take -\frac{\sqrt{2}}{2} as a common factor

∴ cos(\frac{3}{4}\pi-\alpha)=(-\frac{\sqrt{2}}{2})(cos\alpha-sin\alpha) ⇒ (5)

Substitute (3) and (5) in (1)

∴  \frac{cos(\alpha-\frac{5}{4}\pi )}{cos(\frac{3}{4}\pi-\alpha)}   =  \frac{-\frac{\sqrt{2}}{2}(cos\alpha+sin\alpha)}{-\frac{\sqrt{2}}{2}(cos\alpha-sin\alpha)}

- Simplify it by divide up and down by -\frac{\sqrt{2}}{2}

∴  \frac{cos(\alpha-\frac{5}{4}\pi )}{cos(\frac{3}{4}\pi-\alpha)}   =  \frac{(cos\alpha+sin\alpha)}{(cos\alpha-sin\alpha)}

∴ Right hand side = \frac{(cos\alpha+sin\alpha)}{(cos\alpha-sin\alpha)}

∵ cos∝ + sin∝ = sin∝ + cos∝

∴ Left hand side = Right hand side

∴ The identity is verified

You might be interested in
Find the 9th term of the arithmetic sequence whose common difference is d=2 and whose first term is a1=4
White raven [17]

Answer:

Step-by-step explanation:

nth term = a + (n-1)d

9th term = 4 + 8 * 2

               = 4 + 16

               =20

8 0
3 years ago
Find the zeros of f(x)=x^305x^2-x+5 by factoring.
bekas [8.4K]

Answer:

-(x^(307) - x + 5 - f (x)) = 0

Step-by-step explanation:

6 0
3 years ago
What is the coordinate of the point that is 3 over 5 of the way from A(-9,3) to B(21,-2)?
fredd [130]

Answer: 9,0

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
[Function Composition] could someone help me with this answers or show work either is fine
zavuch27 [327]

Answer:

21

Step-by-step explanation:

Given the following expressions

f(x) = x³-2x

g(x) =-x-2

We are to find (fog)(-5)

fog = f(g(x))

f(g(x)) = f(-x-2)

Replace x with -x-2 in f(x)

f(-x-2) = (-x-2)³-2(-x-2)

f(-x-2) = (-x-2)³+2x+4

fog = (-x-2)³+2x+4

Substitute x = -5 into the result

fog(-5) = (-x-2)³+2x+4

fog(-5) = (-(-5)-2)³+2(-5)+4

fog(-5) = (5-2)³-10+4

fog(-5) = 3³-6

fog(-5) = 27-6

fog(-5) = 21

Hence the required result of the composite function is 21

8 0
3 years ago
What is the factored form of 6x2 + 13x + 6?
MariettaO [177]

Answer:

(3x+2)(2x+3)

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • What is YZ ?<br> Enter your answer as a decimal in the box.
    6·1 answer
  • A truck starts off 180 miles directly east from the city of Hartville. It travels due south at a speed of 45 miles per hour. Aft
    11·1 answer
  • Find the center of a circle with the equation: x2+y2−18x−14y+124=0
    7·2 answers
  • A Cube is made of white materiel, but the exterior is painted black. If the cube is cut into 125 smaller cubes of exactly the sa
    11·1 answer
  • Answers for the 2 boxes please :)​
    11·1 answer
  • Please answer them! be quick if you can, thank you.
    11·1 answer
  • Plz helps me i need help on dis question
    12·2 answers
  • PLEASE HELP! DUE TONIGHT
    9·2 answers
  • If a = 2 and b = 6, what is the value of the following expression?
    5·1 answer
  • Please help me!!!!!! I will give brainliest!!!!! Fast!!!!!7 students from a class of 10 are going to be chosen to be on the danc
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!