Answer:
10 quarters = $2.50
10 nickels = $0.50
that leaves $0.20 for other coins (dimes / pennies)
Step-by-step explanation:
First, suppose she has only quarters and nickels and no other coins. Then if C is the identical number of coins of each type, then 5C + 25C = 320, so 30C = 320 and 3C = 32, but there is no integer solution to this. So she must have at least one other type of coin.
Assume she has only quarters, nickels, and dimes. Then if D is the number of dimes, 5C + 25C + 10D = 320, which means 30C + 10D = 320, or 3C + D = 32. The smallest D can be is 2, leaving 3C = 30 and thus C = 10. So in this scenario she would have 10 quarters, 10 nickels, and two dimes to make $2.50 + $0.50 + $0.20 = $3.20.
This has to be the highest number, because if she had 11 quarters and 11 nickels, that alone would add up to 11(0.25) + 11(0.05) = $3.30, which would already be too much.
First you distribute...
-2n - 6 - 35 - 14n
Then you simplify...
-16n - 41
Done
First let’s try to cancel out the x
5x + -5x = 0
Add the y and the numbers together
-3y + -2y = -5y
26 + -16 = 10
-5y = 10
y = -2
Use y=-2 in one of the equations
-3(-2) + 5x = 26
6 + 5x = 26
5x = 20
X = 4
So
Y= -2
X= 4
https://mathsmadeeasy.co.uk/gcse-maths-revision/simultaneous-equations-gcse-maths-revision/
Check this link out for more help!
We can add 1/6 & 1/3 together to find out the total amount of crackers that were eaten:
1/6 + 1/3 (Find the Common Denominator. In this case it is 6.)
= 1/6 + 2/6
= 3/6 (Now find the Lowest Terms. Both 6 & 3 divide into 3)
= 1/2 (In Lowest Terms)
This means that 1/2 of the Crackers have been eaten.
1/2 of 18 = 9
Therefore, Bob has 9 Crackers left.